P. Du et al. / Tetrahedron Letters 51 (2010) 188–191
191
Figure 5. Tentative models for the formation of vesicles and organogels from the quadruply hydrogen-bonded supramolecular polymers in apolar media.
H.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. W. J. Am. Chem. Soc. 1998,
120, 6761–6769; (c) Corbin, P. S.; Zimmerman, S. C. J. Am. Chem. Soc. 1998, 120,
9710–9711; (d) Corbin, P. S.; Zimmerman, S. C. J. Am. Chem. Soc. 2000, 122,
3779–3780; (e) Lüning, U.; Kühl, C. Tetrahedron Lett. 1998, 39, 5735–5738; (f)
Taubitz, J.; Lüning, U.; Grotemeyer, J. Chem. Commun. 2004, 2400–2401; (g)
Gong, B.; Yan, Y.; Zeng, H.; Skrzypczak-Jankunn, E.; Kim, Y. W.; Zhu, J.; Ickes, H.
J. Am. Chem. Soc. 1999, 121, 5607–5608; (h) Zhao, X.; Wang, X.-Z.; Jiang, X.-K.;
Chen, Y.-Q.; Li, Z.-T.; Chen, G.-J. J. Am. Chem. Soc. 2003, 125, 15128–15139; (i)
Sun, H.; Steeb, J.; Kaifer, A. E. J. Am. Chem. Soc. 2006, 128, 2820–2821; (j) Yang,
Y.; Yan, H.-J.; Chen, C.-F.; Wan, L.-J. Org. Lett. 2007, 9, 4991–4994.
2. For representative examples, see: (a) Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi,
A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Nature 2000, 407, 167–170;
(b) Scherman, O. A.; Ligthart, G. B. W. L.; Sijbesma, R. P.; Meijer, E. W. Angew.
Chem., Int. Ed. 2006, 45, 2072–2076; (c) Park, T.; Zimmerman, S. C.; Nakashima, S.
J. Am. Chem. Soc. 2005, 127, 6520–6521; (d) Park, T.; Zimmerman, S. C.; Ong, H. C.;
Todd, E. M.; Kuykendall, D. W.; Quansah, K. PMSE Prepr. 2007, 96, 138–139; (e)
Roland, J. T.; Guan, Z. J. Am. Chem. Soc. 2004, 126, 14328–14329; (f)Kushner, A. M.;
Vossler, J. D.; Williams, G. A.; Guan, Z. J. Am. Chem. Soc. 2009, 131, 8766–8768.
3. (a) Li, Z.-T.; Hou, J.-L.; Li, C. Acc. Chem. Res. 2008, 41, 1343–1353; (b) Cai, W.;
Wang, G.-T.; Xu, Y.-X.; Jiang, X.-K.; Li, Z.-T. J. Am. Chem. Soc. 2008, 130, 6936–
6937; (c) Cai, W.; Wang, G.-T.; Du, P.; Wang, R.-X.; Jiang, X.-K.; Li, Z.-T. J. Am.
Chem. Soc. 2008, 130, 13450–13459.
ing that the supramolecular polymers accounted for the gelation.
SEM images showed that all the gels exhibited fibrous structures
(see the Supplementary data), while concentration gradient exper-
iments revealed that the fibrils could be formed by fusion of the
smaller vesicles.
In conclusion, two novel quadruple hydrogen-bonding motifs
have been developed from aromatic hydrazide-based monomers,
which can be utilized to construct supramolecular polymers.
Although the stability of the novel motifs is modest, the supramo-
lecular polymers exhibit unique self-assembling property, that is,
forming both vesicles and organogels in hydrocarbons. Because
the binding segments consist of three benzene units, they may
stack to stabilize the intermolecular hydrogen bonding in polar
media,15 which will be exploited in the future.
Acknowledgments
4. (a) Yoshikawa, I.; Sawayama, J.; Araki, K. Angew. Chem., Int. Ed. 2008, 47, 1038–
1041; (b) Kolomiets, E.; Buhler, E.; Candau, S. J.; Lehn, J.-M. Macromolecules
2006, 39, 1173–1181; (c) Yang, Y.; Chen, T.; Xiang, J.-F.; Yan, H.-J.; Chen, C.-F.;
Wan, L.-J. Chem. Eur. J. 2008, 14, 5742–5746; (d) Ge, Z.; Hu, J.; Huang, F.; Liu, S.
Angew. Chem., Int. Ed. 2009, 48, 1798–1802.
We thank NSFC (Nos. 20942004, 20621062, 20672137,
20732007, 20872167), NBRP (2007CB808001) and the Science and
Technology Commission of Shanghai Municipality (09XD1405300)
for financial support.
5. Raj, S. S. S.; Yamin, B. M.; Boshaala, A. M. A.; Tarafder, M. T. H.; Crouse, K. A.;
Fun, H.-K. Acta Crystallogr., Sect. C 2000, 56, 1011–1012.
6. Zhu, Y.-Y.; Wu, J.; Li, C.; Zhu, J.; Hou, J.-L.; Li, C.-Z.; Jiang, X.-K.; Li, Z.-T. Cryst.
Growth Des. 2007, 7, 1490–1496.
Supplementary data
7. (a) Gong, B. Chem. Eur. J. 2001, 7, 4336–4342; (b) Huc, I. Eur. J. Org. Chem. 2004,
17–29; (c) Li, Z.-T.; Hou, J.-L.; Li, C.; Yi, H.-P. Chem.-Asian J. 2006, 1, 766–778.
8. Yi, H.-P.; Wu, J.; Ding, K.-L.; Jiang, X.-K.; Li, Z.-T. J. Org. Chem. 2007, 72, 870–877.
9. Chang, S. K.; Van Engen, D.; Fan, E.; Hamilton, A. D. J. Am. Chem. Soc. 1991, 113,
7640–7645.
10. Berl, V.; Schmutz, M.; Krische, M. J.; Khoury, R. G.; Lehn, J.-M. Chem. Eur. J. 2002,
8, 1227–1244.
11. Conners, K. A. Binding Constants: The Measurement of Molecular Complex
Stability; Wiley: New York, 1987.
12. (a) Dobrawa, R.; Lysetska, M.; Ballester, P.; Grne, M.; Würthner, F.
Macromolecules 2005, 38, 1315–1325; (b) Zhu, Y.-Y.; Li, C.; Li, G.-Y.; Jiang, X.-
K.; Li, Z.-T. J. Org. Chem. 2008, 73, 1745–1751.
13. Nelson, J. C.;Saven, J. G.;Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793–1796.
14. George, M.; Weiss, R. G. Acc. Chem. Res. 2006, 39, 489–497.
15. (a) Brunsveld, L.; Vekemans, J. A. J. M.; Hirschberg, J. H. K. K.; Sijbesma, R. P.;
Meijer, E. W. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4977–4982; (b) Obert, E.;
Bellot, M.; Bouteiller, L.; Andrioletti, F.; Lehen-Ferrenbach, C.; Boué, F. J. Am.
Chem. Soc. 2007, 129, 15601–15605.
Crystallographic data (excluding structure factors) for struc-
tures 1a, 1b, 2a, and 2b in this Letter have been deposited with
the Cambridge Crystallographic Data Centre as supplementary
publication Nos. CCDC 746809, 725875, 746808, and 725874,
respectively. Copies of the data can be obtained free of charge, on
application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK
(fax: t44 (0) 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk). Syn-
thesis and characterizations, selected (2D) 1H and 13C NMR spectra,
additional AFM and SEM images, gelation results, typical procedure
for the evaluation of association constants. Supplementary data
associated with this article can be found, in the online version, at
References and notes
1. For representative examples, see: (a) Beijer, F. H.; Kooijman, H.; Spek, A. L.;
Sijbesma, R. P.; Meijer, E. W. Angew. Chem., Int. Ed. 1998, 37, 75–78; (b) Beijer, F.