Note
Macromolecules, Vol. 43, No. 3, 2010 1663
(4) Myers, M.; Connor, E. F.; Glausser, T.; Moeck, A.; Nyce, G. W.;
Hedrick, J. L. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 844.
(5) (a) Connor, E. F.; Nyce, G. W.; Myers, M.; Moeck, A.; Hedrick,
J. L. J. Am. Chem. Soc. 2002, 124, 914. (b) Nyce, G. W.; Glausser, T.;
Connor, E. F.; Moeck, A.; Waymouth, R. M.; Hedrick, J. L. Chem. Soc.
2003, 125, 3046. (c) Nyce, G. W.; Csihony, S.; Waymouth, R. M.;
Hedrick, J. L. Chem.;Eur. J. 2004, 10, 4073. (d) Jensen, T. R.;
Breyfogle, L. E.; Hillmyer, M. A.; Tolman, W. B. Chem. Comm. 2004,
2504. (e) Coulembier, O.; Dove, A. P.; Pratt, R. C.; Sentman, A. C.;
Culkin, D. A.; Mespouille, L.; Dubois, P.; Waymouth, R. M.; Hedrick,
J. L. Angew. Chem., Int. Ed. 2005, 44, 4964. (f) Culkin, D. A.; Jeong,
W.; Csihony, S.; Gomez, E. D.; Hedrick, J. L.; Balsara, N. P.;
Waymouth, R. M. Angew. Chem., Int. Ed. 2007, 46, 2627. (g) Jeong,
W.; Hedrick, J. L.; Waymouth, R. M. J. Am. Chem. Soc. 2007, 129,
8414. (h) Jeong, W.; Shin, E. J.; Culkin, D. A.; Hedrick, J. L.;
Waymouth, R. M. J. Am. Chem. Soc. 2009, 131 (13), 4884. (h) Pinaud,
J.; Vijayakrishna, K.; Taton, D.; Gnanou, Y. Macromolecules 2009, 42,
4932. (i) Raynaud, J.; Absalon, C.; Gnanou, Y.; Taton, D. J. Am. Chem.
Soc. 2009, 131, 3201. (j) Raynaud, J.; Ciolino, A.; Baceiredo, A.;
Destarac, M.; Bonnette, F.; Kato, T.; Gnanou, Y.; Taton, D. Angew.
Chem., Int. Ed. 2008, 47, 5390.
(6) (a) Shibasaki, Y.; Sanada, H.; Yokoi, M.; Sanda, F.; Endo, T.
Macromolecules 2000, 33, 4316. (b) Lou, X. D.; Detrembleur, C.;
Jerome, R. Macromolecules 2002, 35, 1190. (c) Liu, J. Y.; Liu, L. J.
Macromolecules 2004, 37, 2674. (d) Bourissou, D.; Martin-Vaca, B.;
Dumitrescu, A.; Graullier, M.; Lacombe, F. Macromolecules 2005, 38,
9993. (e) Casas, J.; Persson, P. V.; Iversen, T.; Cordova, A. Adv. Synth.
Catal. 2004, 346, 1087.
Figure 6. Tetrahedral intermediate resulting from the reaction of 1 with
methanol and L-lactide.
(7) (a) Dove, A. P.; Pratt, R. C.; Lohmeijer, B. G. G.; Waymouth, R. M.;
Hedrick, J. L. J. Am. Chem. Soc. 2005, 127, 13798. (b) Pratt, R. C.;
Lohmeijer, B. G. G.; Long, D. A.; Lundberg, P. N. P.; Dove, A. P.; Li, H.;
Wade, C.; Waymouth, R. M.; Hedrick, J. L. Macromolecules 2006, 39, 7863.
(8) (a) Zhang, L.; Nederberg, F.; Pratt, R. C.; Waymouth, R. M.;
Hedrick, J. L.; Wade, C. G. Macromolecules 2007, 40, 4154.
(b) Zhang, L.; Nederberg, F.; Messman, J. M.; Pratt, R. C.; Hedrick,
J. L.; Wade, C. G. J. Am. Chem. Soc. 2007, 129, 12610.
(9) (a) Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth,
R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2006, 128, 4556.
(b) Lohmeijer, B. G. G.; Pratt, R. C.; Leibfarth, F.; Logan, J. W.; Long,
D. A.; Dove, A. P.; Nederberg, F.; Choi, J.; Wade, C.; Waymouth, R. M.;
Hedrick, J. L. Macromolecules 2006, 39, 8574.
cyclohexyl groups, thereby attenuating the conjugation between
the three guanidine nitrogens.
Investigation of Scheme 1B indicates that 1 stabilizes the
structure of the tetrahedral intermediate through hydrogen bond-
ing in an analogous manner to that for TBD18 (see Figure 6).
The efficacy of acyclic guanidines for the ROP of lactide with
predictable molecular weights, narrow polydispersities, and end-
group fidelity was demonstrated. Despite the exceptional control
of these ring-opening reactions, the rate of ring-opening of lactide
with the acyclic guanidines are considerably less than that
observed for the bicyclic TBD.11 Theoretical studies are consis-
tent with a mechanism that involves activation of the alcohol by
the guanidine and by stabilization of the resultant tetrahedral
intermediates through hydrogen-bonding. NMR studies, com-
bined with theoretical calculations, indicate that the acyclic
guanidines are less basic than TBD but are also hydrogen bond
donors, which suggests that cooperative effects of weak second-
ary interactions are important for active and selective catalysis.
(10) (a) Foresti, M. L.; Ferreira, M. L. Macromol. Rapid Commun. 2004,
25, 2025. (b) Schuchardt, U.; Secheli, R.; Vargas, R. M. J. Braz. Chem.
Soc. 1998, 9, 199.
(11) Berlinck, R. G. S. Nat. Prod. Rep. 2002, 19 (617-6495), 1393.
(12) Leow, D.; Tan, C. H. Chem.-Asian J. 2009, 4, 488.
(13) Coles, M. P. Chem. Commun. 2009, 3659.
(14) (a) Amyes, T. L.; Diver, S. T.; Richard, J. P.; Rivas, F. M.; Toth, K.
J. Am. Chem. Soc. 2004, 126, 4366. (b) Kim, Y. J.; Streitwieser, A.
J. Am. Chem. Soc. 2002, 124, 5757. (c) Magill, A. M.; Cavell, K. J.;
Yates, B. F. J. Am. Chem. Soc. 2004, 126, 8717.
References and Notes
€
€
€
(15) Kaljurand, I.; Kutt, A.; Soovali, L.; Rodima, T.; Maemets, V.;
Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019.
(1) (a) Albertsson, A. C.; Palmgren, R. J. Macromol. Sci., Pure Appl.
Chem. 1996, A33, 747. (b) Bourissou, D.; Guerret, O.; Gabbai, F. P.;
(16) (a) Kantam, M. L.; Sreekanth, P Catal. Lett. 2001, 77, 241.
(b) Gelbard, G.; Vielfaure-Joly, F. Tetrahedron Lett. 1998, 39, 2743.
(17) Lohmeijer, B. G. G.; Pratt, R. C.; Leibfarth, F.; Logan, J. W.;
Long, D. A.; Dove, A. P.; Nederberg, F.; Choi, J.; Wade, C.;
Waymouth, R. M.; Hedrick, J. L. Macromolecules 2006, 39, 8574.
(18) (a) Simon, L.; Goodman, J. M. J. Org. Chem. 2007, 72, 9656.
(b) Chuma, A.; Horn, H. W.; Swope, W. C.; Pratt, R. C.; Zhang, L.;
Lohmeijer, B. G. G.; Wade, C. G.; Waymouth, R. M.; Hedrick, J. L.;
Rice, J. E. J. Am. Chem. Soc. 2008, 130, 6749.
(19) Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157.
(20) Kafka, S.; Larissegger-Schnell, B.; Kappe, T. J. Heterocycl. Chem.
2004, 41, 717.
(21) (a) Gelbard, G.; Vielfaure-Joly, F. Tetrahedron Let. 1998, 39, 2743.
(b) Chinchilla, R.; Najera, C.; Sanchez-Agullo, P. Tetrahedron: Asym-
metry 1994, 1393. (c) Leperchec, P.; Baudry, R.; Alvarez, F. U.S. Patent
6,646,103 B1, 2003.
(22) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. (b) Lee, C.;
Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Vosko, S. H.;
Wilk, L.; Nusair, M. Can. J. Phys. (Paris) 1980, 58, 1200. (d)
Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys.
Chem. 1994, 98, 11623.
(23) (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972,
56, 2257. (b) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28,
213. (c) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P.v.R.
J. Comput. Chem. 1983, 4, 294. (d) Woon, D. E.; Dunning, T. H., Jr.
€
Bertrand, G. Chem. Rev. 2000, 100, 39. (c) Lofgren, A.; Albertsson,
A. C.; Dubois, P.; Jerome, R. J. Macromol. Sci., Rev. Macromol. Chem.
Phys. 1995, C35, 379. (d) Albertsson, A.-C.; Varma, I. K. Aliphatic
Polyesters: Synthesis, Properties and Applications. In Advances in Poly-
mers 1zScience; Albertsson, A.-C., Ed.; Springer-Verlag: Berlin, 2002;
Vol. 157, pp 1-40. (e) Stridsberg, K. M.; Ryner, M.; Albertsson, A. C.
Controlled Ring Opening Polymerization: Polymers with controlled Ar-
chitecture. In Advances in Polymers Science; Albertsson, A. C., Ed.;
Springer-Verlag: Berlin, 2002; Vol. 157, pp 41-65. (f) Mecerreyes, D.;
Jerome, R.; Dubois, P. Adv. Polym. Sci. 1999, 147, 1. (g) Kricheldorf,
H. R.; Kreiser-Saunders, I. Macromol. Symp. 1996, 103, 85. (h) Penczek,
S. J. Polym. Sci., Polym. Chem. 2000, 38, 1919. (i) Kubisa, P.; Penczek,
S. Prog. Polym. Sci. 1999, 24, 1409.
(2) (a) Kamber, N.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer,
B. G. G.; Hedrick, J. L. Chem. Rev. 2007, 107, 5813. (b) Dove, A. P.; Pratt,
R. C.; Lohmeijer, B. G. G.; Culkin, D. A.; Hagberg, E. C.; Nyce, G. W.;
Waymouth, R. M.; Hedrick, J. L. Polymer 2006, 47, 4018.
(3) (a) Nederberg, F.; Connor, E. F.; Glausser, T.; Hedrick, J. L.
Chem. Comm. 2001, 2066. (b) Nederberg, F.; Connor, E. F.; Moeller,
M.; Glausser, T.; Hedrick, J. L. Angew. Chem., Int. Ed. 2001, 40, 2712.
(c) Trimaille, T.; Moeller, M.; Gurny, R. J. Polym. Sci., Part A: Polym.
Chem. 2004, 42, 4379. (d) Thillaye Du Boullay, O.; Marchal, E.;
Martin-Vaca, B.; Cossio, F. P.; Bourissou, D. J. Am. Chem. Soc. 2006,
128, 16442.