Article
Chem. Mater., Vol. 22, No. 4, 2010 1421
because of changing dynamic at the molecular level and
because of multiple phase transitions.5 Charge carrier
mobility, for example, decreases by a factor of 7 with a
temperature increase of only 20 °C in the hexagonal
columnar mesophase (Colh) of hexakis(hexylthio)-
triphenylene and decreases by an order of magnitude at
the phase transition from a higher ordered columnar to a
less ordered Colh mesophase.6,7
Charge carrier mobility generally decreases with de-
creasing order of the mesophases and large steps in
declining mobility are observed at phase transitions bet-
ween higher and lower ordered columnar mesophases
upon heating. A lesser dependence of mobility on tem-
perature is generally observed within the temperature
range of one mesophase although observed changes
largely vary with the types of materials and mesophases.
A decrease in charge carrier mobility with increasing
temperature has been observed in the Colh phases of most
triphenylene based discotics,6,8 although temperature
independent mobility values have also been reported.9
In contrast, a small increase in mobility is observed in the
Colh phases of many discotic phthalocyanines.7,10
intermolecular electronic interactions are most likely the
dominant source of temperature dependence of charge
carrier mobility in columnar mesophases, especially when
mobility is measured by TRMC that provides intrinsic
(short-range) values. This assumption is supported by the
fact that charge carrier mobility in many higher ordered
discotic columnar mesophases (e.g., helical and plastic
columnar mesophases) is rather temperature independent
because molecular motions are much more restricted than
in conventional columnar mesophases.7,12
A quantum chemical molecular description of the
dependence of charge carrier mobility on intermolecular
electronic interactions based on the Markus theory has
recently been provided by several groups.13,14 The theory
predicts an increase in hopping rate (charge carrier
mobility) with increasing transfer integral and decreasing
reorganization energy. The transfer integral, which is a
function of the overlap of frontier orbitals of adjacent
molecules, crucially depends on the relative distances,
positions, and orientations of stacked aromatic cores. An
increase in temperature usually leads to an increase of the
stacking distance and translational mobility of discotic
molecules that both cause a decrease in transfer integral.
Similarly strong effects on the transfer integral have
changes in rotational angle of stacked molecules because
the area of overlapping π-systems changes with mutual
rotation depending on the shape of the aromatic core.
H-bonded stacks of discotic molecules are ideal materi-
als for probing this model because the columnar stacking
distance as well as relative orientations and locations
are controlled by H-bonds and, consequently, well-
defined.15-17 Gearba et al. reported an increase in charge
carrier mobility and stacking distance with increasing
temperature in H-bonded columnar discotic mesophases
of hexaazatriphenylene.15 This counterintuitive experi-
mental finding is likely a result of conformationally
coupled changes in the stacking distance and mutual
rotation angle governed by H-bonding between amide
groups. An increase in stacking distance forces the amide
groups more out-of-plane to maintain their ideal
H-bonding distance and reduces the rotation angle bet-
ween adjacent cores. The reduction in rotational angle
apparently increases the intermolecular charge-transfer
integral more than the increase in stacking distance
Interpretation and comparison of these results is com-
plex because different experimental techniques have been
used, such as time-resolved microwave conductivity
(TRMC) and time-of-flight photoconductivity, and the
temperature dependence is not only affected by changing
intermolecular electronic interactions but also the charge
transport mechanism as well as the number and types of
defects in the discotic material.11 However, changing
(1) (a) Cammidge, A. N.; Bushby, R. J. In Handbook of Liquid
Crystals; Demus, D., Goodby, J., Gray, G., W., Spiess, H.-W., Vill,
V., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 2B,
p 693. (b)
Chandrasekhar, S. In Handbook of Liquid Crystals; Demus, D.,
Goodby, J., Gray, G., W., Spiess, H.-W., Vill, V., Eds.; Wiley-VCH:
Weinheim, 1998; Vol. 2B, p 749. (c) Boden, N.; Movaghar, B. In
Handbook of Liquid Crystals; Demus, D., Goodby, J., Gray, G., W.,
Spiess, H.-W., Vill, V., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 2B, p
781. (d) Wu, J.; Pisula, W.; M€ullen, K. Chem. Rev. 2007, 107, 718. (e)
Kato, T.; Yasuda, T.; Kamikawa, Y.; Yoshio, M. Chem. Commun. 2009,
729. (f) Kumar, S. Liq. Cryst. 2004, 31, 1037.
(2) (a) Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hagele, C.;
Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.;
Tosoni, M. Angew. Chem., Int. Ed. 2007, 46, 4832. (b) Sergeyev, S.;
Pisula, W.; Geerts, Y. H. Chem. Soc. Rev. 2007, 36, 1902.
(3) Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.;
Singer, K. D.; Balagurusamy, V. S. K.; Heiney, P. A.; Schnell, I.;
Rapp, A.; Spiess, H. W.; Hudson, S. D.; Duan, H. Nature 2002,
419, 384.
(4) Bushby, R. J.; Lozman, O. R. Curr. Opin. Solid State Mater. Sci.
2002, 6, 569.
(5) Shen, X.; Dong, R. Y.; Boden, N.; Bushby, R. J.; Martin, P. S.;
Wood, A. J. Chem. Phys. 1998, 108, 4324.
(12) van de Craats, A. M.; Schouten, P. G.; Warman, J. M. J. Jpn. Liq.
Cryst. Soc. 1998, 2, 12.
(13) (a) Cornil, J.; Lemaur, V.; Calbert, J. P.; Bredas, J. L. Adv. Mater.
2002, 14, 726. (b) Lemaur, V.; Da Silva Filho, D. A.; Coropceanu, V.;
Lehmann, M.; Geerts, Y.; Piris, J.; Debije, M. G.; Van de Craats, A. M.;
Senthilkumar, K.; Siebbeles, L. D. A.; Warman, J. M.; Bredas, J. L.;
Cornil, J. J. Am. Chem. Soc. 2004, 126, 3271. (c) Xinliang, F.; Marcon,
V.; Pisula, W.; Hansen, M. R.; Kirkpatrick, J.; Grozema, F.; Andrienko,
D.; Kremer, K.; M€ullen, K. Nat. Mater. 2009, 8, 421.
(14) Kirkpatrick, J.; Marcon, V.; Kremer, K.; Nelson, J.; Andrienko, D.
J. Chem. Phys. 2008, 129, 094506.
(15) Gearba, R. I.; Lehmann, M.; Levin, J.; Ivanov, D. A.; Koch, M. H.
J.; Barbera, J.; Debije, M. G.; Piris, J.; Geerts, Y. H. Adv. Mater.
2003, 15, 1614.
(6) Adam, D.; Schuhmacher, P.; Simmerer, J.; Haussling, L.;
Siemensmeyer, K.; Etzbach, K. H.; Ringsdorf, H.; Haarer, D.
Nature 1994, 371, 141.
(7) Warman, J. M.; van de Craats, A. M. Mol. Cryst. Liq. Cryst. 2003,
396, 41.
(8) Adam, D.; Schuhmacher, P.; Simmerer, J.; Haussling, L.; Paulus,
W.; Siemensmeyer, K.; Etzbach, K.-H.; Ringsdorf, H.; Haarer, D.
Adv. Mater. 1995, 7, 276.
(9) Kreouzis, T.; Donovan, K. J.; Boden, N.; Bushby, R. J.; Lozman,
O. R.; Liu, Q. J. Chem. Phys. 2001, 114, 1797.
(10) Warman, J. M.; Kroeze, J. E.; Schouten, P. G.; van de Craats,
A. M. J. Porphyrins Phthalocyanines 2003, 7, 342.
(11) (a) Debije, M. G.; Piris, J.; de Haas, M. P.; Warman, J. M.;
(16) Paraschiv, I.; Giesbers, M.; van Lagen, B.; Grozema, F. C.;
Abellon, R. D.; Siebbeles, L. D. A.; Marcelis, A. T. M.; Zuilhof,
€
Tomovic, Z.; Simpson, C. D.; Watson, M. D.; Mullen, K. J. Am.
Chem. Soc. 2004, 126, 4641. (b) Iino, H.; Hanna, J.; Haarer, D. Phys.
Rev. B 2005, 72. (c) Iino, H.; Takayashiki, Y.; Hanna, J.; Bushby, R. J.;
Haarer, D. Appl. Phys. Lett. 2005, 87.
€
H.; Sudholter, E. J. R. Chem. Mater. 2006, 18, 968.
€
(17) Paraschiv, I.; Tomkinson, A.; Giesbers, M.; Sudholter, E. J. R.;
Zuilhof, H.; Marcelis, A. T. M. Liq. Cryst. 2007, 34, 1029.