pubs.acs.org/joc
the room temperature direct arylation6 and alkynylation7
Room Temperature Direct Alkynylation of 1,3,4-
Oxadiazoles with Alkynyl Bromides under Copper
Catalysis
under palladium or gold catalysis, the substrates are still
limited to the highly electron-rich heterocycles such as
indoles, pyrroles, and imidazolines. Moreover, some cases
require use of the special hypervalent iodine reagents as
aryl or alkynyl sources.6a,7 Thus, further developments of
catalyst systems are quite appealing for milder reaction
conditions.
Recently, relatively common and less expensive copper
salts and complexes have received much attention in the field
of direct arylation8 and alkenylation.9 In addition to its
economical benign effect, the unique catalytic activity of
copper is also observed.8e Herein, we report an efficient
example of the copper-catalyzed direct alkynylation of a
useful heteroarene core having an electron-deficient nature.
Tsuyoshi Kawano, Naoto Matsuyama, Koji Hirano,
Tetsuya Satoh, and Masahiro Miura*
Department of Applied Chemistry, Faculty of Engineering,
Osaka University, Suita, Osaka 565-0871, Japan
Received December 3, 2009
(3) Recent examples: (a) Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K.
J. Am. Chem. Soc. 2006, 128, 11748. (b) Stuart, D. R.; Villemure, E.; Fagnou,
K. J. Am. Chem. Soc. 2007, 129, 12072. (c) Stuart, D. R.; Fagnou, K. Science
2007, 316, 1172. (d) Zhang, Z.; Hu, Z.; Yu, Z.; Lei, P.; Chi, H.; Wang, Y.; He,
R. Tetrahedron Lett. 2007, 48, 2415. (e) Lewis, J. C.; Berman, A. M.;
Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493.
(f) Blaszykowski, C.; Aktoudianakis, E.; Alberico, D.; Bressy, C.; Hulcoop,
D. G.; Jafarpour, F.; Joushaghani, A.; Laleu, B.; Lautens, M. J. Org. Chem.
2008, 73, 1888. (g) Zhao, J.; Zhang, Y.; Cheng, K. J. Org. Chem. 2008, 73,
7428. (h) Berman, A. M.; Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am.
Chem. Soc. 2008, 130, 14926. (i) Yang, S.-D.; Sun, C.-L.; Fang, Z.; Li, B.-J.;
Li, Y.-Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1473. (j) Nandurkar,
N. S.; Bhanushali, M. J.; Bhor, M. D.; Bhanage, M. Tetrahedron Lett. 2008,
49, 1045. (k) Cusati, G.; Djakovitch, L. Tetrahedron Lett. 2008, 49, 2499.
(l) Potavathri, S.; Dumas, A. S.; Dwight, T. A.; Naumiec, G. R.; Hammann,
J. M.; DeBoef, B. Tetrahedron Lett. 2008, 49, 4050. (m) Yanagisawa, S.;
Sudo, T.; Noyori, R.; Itami, K. Tetrahedron 2008, 64, 6073. (n) Ackermann,
L.; Althammer, A.; Fenner, S. Angew. Chem., Int. Ed. 2009, 48, 201. (o) Join,
B.; Yamamoto, T.; Itami, K. Angew. Chem., Int. Ed. 2009, 48, 3644.
(p) Canivet, J.; Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11, 1733.
(q) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 1737.
(r) Kobayashi, O.; Uraguchi, D.; Yamakawa, T. Org. Lett. 2009, 11, 2679.
ꢀ
(s) Besselievre, F.; Lebrequier, S.; Betzer, F. M.; Piguel, S. Synthesis 2009,
3511.
(4) (a) Gottumukala, A. L.; Derridj, F.; Djebbar, S.; Doucet, H. Tetrahe-
dronLett. 2008, 49, 2926. (b)Koubachi, J.;ElKazzouli,S.;Berteina-Raboin,S.;
Mouaddib, A.; Guillaumet, G. Synthesis 2008, 2537. (c) Verrier, C.; Hoarau,
C.; Marsais, F. Org. Biomol. Chem. 2009, 7, 647.
(5) (a) Kobayashi, K.; Arisawa, M.; Yamaguchi, M. J. Am. Chem. Soc.
2002, 124, 8528. (b) Amemiya, R.; Fujii, A.; Yamaguchi, M. Tetrahedron
Lett. 2004, 45, 4333. (c) Seregin, I. V.; Ryabova, V.; Gevorgyan, V. J. Am.
Chem. Soc. 2007, 129, 7742. (d) Gu, Y.; Wang, X.-m. Tetrahedron Lett. 2009,
50, 763. (e) Tobisu, M.; Ano, Y.; Chatani, N. Org. Lett. 2009, 11, 3250.
(f) Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11,
4156. Moran also reported the palladium-catalyzed direct alkynylation of
N-phenyl sydnone with (bromoethynyl)benzene albeit with a low yield
(34%): (g) Rodriguez, A.; Fennessy, R. V.; Moran, W. J. Tetrahedron Lett.
2009, 50, 3942.
The direct alkynylation reaction of 1,3,4-oxadiazoles with
alkynyl bromides efficiently proceeds in the presence of a
copper catalyst at room temperature to create the corre-
sponding heteroaryl-alkynyl linkage in good yields. This
direct coupling provides a rapid and convergent access to
oxadiazole core π-conjugated systems.
Metal-mediated direct functionalization of C-H bonds
has grown rapidly in modern synthetic chemistry because of
its possibility for concise increase of molecular complexity
from the ubiquitous C-H bonds.1 In particular, the catalytic
direct transformation of C-H to C-C bonds with organic
halides or pseudohalides has had a significant impact on the
conventional cross-coupling reactions with organometallic
compounds2 since the inevitable preactivation step, metala-
tion, can be obviated in such methodologies. So far, a variety
of catalyst systems have been explored, and the direct aryla-
tion,3 alkenylation,4 and alkynylation5 of arenes and hetero-
arenes has become possible. However, these catalytic
reactions generally suffered from the need for drastic
conditions such as elevated temperature and longer reac-
tion periods. Although current efforts by Sanford, Chen,
Larrosa, and Waser overcome these problems and achieve
(6) (a) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am.
Chem. Soc. 2006, 128, 3994. (b) Lu, J.; Tan, X.; Chen, C. J. Am. Chem. Soc.
2007, 129, 7768. (c) Lebrasseur, N.; Larrosa, I. J. Am. Chem. Soc. 2008, 130,
2926.
(7) Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem., Int. Ed. 2009,
48, 9346.
(1) Recent reviews: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem.
Rev. 2007, 107, 174. (b) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200.
(c) Campeau, L. C.; Stuart, D. R.; Fagnou, K. Aldrichchim. Acta 2007, 40, 35.
(d) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (e) Park,
Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (f) Lewis, L. C.;
Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013. (g) Kakiuchi,
F.; Kochi, T. Synthesis 2008, 3013. (h) Daugulis, O.; Do, H.-Q.; Shabashov,
D. Acc. Chem. Res. 2009, 42, 1074. (i) Kulkarni, A. A.; Daugulis, O. Synthesis
2009, 4087.
(2) (a) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A.,
Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004. (b) Tsuji, J. Palladium
Reagents and Catalysts, 2nd ed.; Wiley: Chichester, UK, 2004. (c) Cross-Coupling
Reactions; Miyaura, N., Ed.; Topics in Current Chemistry; Springer: Berlin,
Germany, 2002; No. 219.
(8) (a) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404.
(b) Ackermann, L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R. Org. Lett.
2008, 10, 3081. (c) Yoshizumi, T.; Tsurugi, H.; Satoh, T.; Miura, M.
Tetrahedron Lett. 2008, 49, 1598. (d) Phipps, R. J.; Grimster, N. P.; Gaunt,
M. J. J. Am. Chem. Soc. 2008, 130, 8172. (e) Phipps, R. J.; Gaunt, M. J.
Science 2009, 323, 1593. (f) Yotphan, S.; Bergman, R. G.; Ellman, J. A. Org.
Lett. 2009, 11, 1511. (g) Yoshizumi, T.; Satoh, T.; Hirano, K.; Matsuo, D.;
Orita, A.; Otera, J.; Miura, M. Tetrahedron Lett. 2009, 50, 3273. (h) Zhao, D.;
Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem., Int.
Ed. 2009, 48, 3296. (i) Kawano, T.; Yoshizumi, T.; Hirano, K.; Satoh, T.;
Miura, M. Org. Lett. 2009, 11, 3072.
ꢀ
(9) Besselievre, F.; Piguel, S.; Mahuteau-Betzer, F.; Grierson, D. Org.
Lett. 2008, 10, 4029.
1764 J. Org. Chem. 2010, 75, 1764–1766
Published on Web 01/14/2010
DOI: 10.1021/jo9025622
r
2010 American Chemical Society