pathway. In this instance, thiol radical generated in situ can abstract from α-amino
C–H bonds in the substrate to form the key α-amino radical intermediate.
34. M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, G. G. Malliaras, S.
Bernhard, Single-layer electroluminescent devices and photoinduced hydrogen
production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719
(2005).
51. B. M. Choudary, N. S. Chowdari, S. Madhi, M. L. Kantam, A trifunctional catalyst for
one-pot synthesis of chiral diols via Heck coupling-N-oxidation-asymmetric
dihydroxylation: Application for the synthesis of diltiazem and taxol side chain. J.
52. L. A. Mitscher, P. N. Sharma, D. T. W. Chu, L. L. Shen, A. G. Pernet, Chiral DNA
gyrase inhibitors. 2. Asymmetric synthesis and biological activity of the
35. C. Le, Y. Liang, R. W. Evans, X. Li, D. W. C. MacMillan, Selective sp3 C–H alkylation
via polarity-match-based cross-coupling. Nature 547, 79–83 (2017).
enantiomers
of
9-fluoro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-2,3-
dihydro-7H- pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid (ofloxacin). J.
36. D. D. M. Wayner, K. B. Clark, A. Rauk, D. Yu, D. A. Armstrong, C−H bond 53. F. G. Glansdorp, R. J. Spandl, J. E. Swatton, O. Loiseleur, M. Welch, D. R. Spring,
dissociation energies of alkyl amines: Radical structures and stabilization
Using chemical probes to investigate the sub-inhibitory effects of azithromycin.
37. C. M. Hadad, P. R. Rablen, K. B. Wiberg, C−O and C−S bonds: Stability, bond 54. P. Allevi, A. Longo, M. Anastasia,
A new convenient transformation of
dissociation energies, and resonance stabilization. J. Org. Chem. 63, 8668–8681
erythromycin A into clarithromycin. Bioorg. Med. Chem. 7, 2749–2752 (1999).
38. L. G. Shaidarova, S. A. Ziganshina, G. K. Budnikov, Electrocatalytic oxidation of
cysteine and cystine at a carbon-paste electrode modified with ruthenium(IV)
39. J. Luo, J. Zhang, Donor–acceptor fluorophores for visible-light-promoted organic
synthesis: Photoredox/Ni dual catalytic C(sp3)–C(sp2) cross-coupling. ACS Catal.
40. H. Morimoto, P. G. Williams, Design and operations at the National Tritium
ACKNOWLEDGMENTS
Research reported in this publication was supported by the National Institutes of
Health (NIH) under award number R01 GM103558-04 (D.W.C.M., Y.Y.L., and
K.N.). Y.Y.L. thanks the Agency for Science, Technology and Research (A*STAR)
for a graduate fellowship. K.N. thanks the Japan Society for the Promotion of
Science for an overseas postdoctoral fellowship. Additional funding was provided
by kind gifts from Merck, Abbvie, BMS, and Janssen. The content is solely the
responsibility of the authors and does not necessarily represent the official views
of the NIH. Additional data supporting the conclusions are available in the
supplementary materials.
41. C. C. Le, M. K. Wismer, Z.-C. Shi, R. Zhang, D. V. Conway, G. Li, P. Vachal, I. W.
Davies, D. W. C. MacMillan,
A general small-scale reactor to enable
standardization and acceleration of photocatalytic reactions. ACS Cent. Sci. 3,
SUPPLEMENTARY MATERIALS
Materials and Methods
Supplementary Text
Figs. S1 to S5
Tables S1 and S2
NMR Spectra
References (47–54)
42. A. W. Czarnik, U.S. Patent 20,090,062,220 (2009).
43. C. W. Plummer, M. J. Clements, H. Chen, M. Rajagopalan, H. Josien, W. K.
Hagmann, M. Miller, M. E. Trujillo, M. Kirkland, D. Kosinski, J. Mane, M. Pachanski,
B. Cheewatrakoolpong, A. F. Nolting, R. Orr, M. Christensen, L. C. Campeau, M. J.
Wright, R. Bugianesi, S. Souza, X. Zhang, J. Di Salvo, A. B. Weinglass, R. Tschirret-
Guth, R. Nargund, A. D. Howard, S. L. Colletti, Design and synthesis of novel,
selective GPR40 agoPAMs. ACS Med. Chem. Lett. 8, 221–226 (2017).
14 September 2017; accepted 30 October 2017
Published online 9 November 2017
10.1126/science.aap9674
44. J. Lu, N. Byrne, J. Wang, G. Bricogne, F. K. Brown, H. R. Chobanian, S. L. Colletti, J.
Di Salvo, B. Thomas-Fowlkes, Y. Guo, D. L. Hall, J. Hadix, N. B. Hastings, J. D.
Hermes, T. Ho, A. D. Howard, H. Josien, M. Kornienko, K. J. Lumb, M. W. Miller, S.
B. Patel, B. Pio, C. W. Plummer, B. S. Sherborne, P. Sheth, S. Souza, S. Tummala,
C. Vonrhein, M. Webb, S. J. Allen, J. M. Johnston, A. B. Weinglass, S. Sharma, S. M.
Soisson, Structural basis for the cooperative allosteric activation of the free fatty
acid receptor GPR40. Nat. Struct. Mol. Biol. 24, 570–577 (2017).
45. T. A. Baillie, Future of toxicology-metabolic activation and drug design: Challenges
and opportunities in chemical toxicology. Chem. Res. Toxicol. 19, 889–893
46. For the use of tracers or reagents in early in vitro screening, epimerization is less
of an issue as the experimental error can be high (>2x in discovery studies for
binding or ex vivo occupancy studies). It should be noted that racemic tracers
have been used in preclinical and clinical settings e.g., PET.
47. D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals (Pergamon
Press, ed. 3, 1988).
48. W. C. Still, M. Kahn, A. Mitra, Rapid chromatographic technique for preparative
separations with moderate resolution. J. Org. Chem. 43, 2923–2925 (1978).
49. C. C. Gruber, G. Oberdorfer, C. V. Voss, J. M. Kremsner, C. O. Kappe, W. Kroutil, An
algorithm for the deconvolution of mass spectroscopic patterns in isotope
labeling studies. Evaluation for the hydrogen-deuterium exchange reaction in
50. P. Zhang, G. Cyriac, T. Kopajtic, Y. Zhao, J. A. Javitch, J. L. Katz, A. H. Newman,
Structure-activity relationships for
a novel series of citalopram (1-(3-
(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-
carbonitrile) analogues at monoamine transporters. J. Med. Chem. 53, 6112–6121
First release: 9 November 2017
(Page numbers not final at time of first release)
5