pubs.acs.org/joc
two classes: (1) transition metal-catalyst involved reactions,
Gold(III)-Catalyzed Tandem Reaction of Ketones
with Phenols: Efficient and Highly Selective Synthesis
of Functionalized 4H-Chromenes
e.g., gold(I)-catalyzed carboalkoxylation reaction of propargyl
esters,4a FeCl3-catalyzed reaction of substituted 2-(hydroxy-
methyl) phenols with β-ketoesters or β-diketones,4b ruthenium-
mediated cycloaddition of propargylic alcohols with phenols,4c
copper-catalyzed intramolecular O-arylation of β-ketoesters,4d
and O-vinylation reaction of phenols with Sn(vinyl)4 followed
by a ruthenium-mediated RCM reaction,4e and palladium-
catalyzed conjugate addition of (2-hydroxyaryl)mercury chlor-
ides with R,β-unsaturated compounds followed by cyclization
and elimination of water;5 (2) organocatalyst involved reac-
tions, e.g., DABCO or phosphine-catalyzed reactions of
salicyclic imines with R,β-unsaturated compounds.4f-h Unfor-
tunately, most of these procedures suffer from using commer-
cially unavailable substrates as starting materials. Therefore,
developing efficient and conventional catalytic processes to
4H-chromenes from simple and readily available substrates
remains a challenging task.
Yunkui Liu,* Jianqiang Qian, Shaojie Lou, Jie Zhu,
and Zhenyuan Xu*
State Key Laboratory Breeding Base of Green Chemistry-
Synthesis Technology, Zhejiang University of Technology,
Hangzhou 310014, People’s Repubilc of China
ykuiliu@zjut.edu.cn; greensyn@zjut.edu.cn
Received December 11, 2009
On the other hand, tandem reactions,6 compared with
stepwise reactions, usually provide more efficient and envir-
onmentally benign processes to construct molecular diversity
and structural complexity from readily available substrates in a
single step without the separation and purification of the
intermediates. Recently, gold-catalyzed tandem reactions7
have received special attention as gold catalysts8 generally
exhibit extraordinary reactivity and show high selectivity in
An efficient and highly selective approach for the synth-
esis of functionalized 4H-chromenes has been developed
via gold(III)-catalyzed condensation/annulation tandem
reaction of ketones with phenols.
(3) For recent examples on the synthesis of 2H-chromenes, see: (a) Zhou, H.;
Xu, Y.-H.; Chung, W.-J.; Loh, T.-P. Angew. Chem., Int. Ed. 2009, 48, 1.
€
€
€
(b) Behrenswerth, A.; Volz, N.; Torang, J.; Hinz, S.; Brase, S.; Muller, C. Bioorg.
Med. Chem. 2009, 17, 2842. (c) Torregroza, I.; Evans, T.; Das, B. C. Chem. Biol.
Drug Des. 2009, 73, 339. (d) Proenc-a, F.; Costa, M. Green Chem. 2008, 10, 995.
(e) Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2007, 9, 4821. (f) Wu,
Y.-C.; Liu, L.; Liu, Y.-L.; Wang, D.; Chen, Y.-J. J. Org. Chem. 2007, 72, 9383.
(g) Hershberger, J. C.; Zhang, L.; Lu, G.; Malinakova, H. C. J. Org. Chem. 2006,
Chromenes (2H-chromenes and 4H-chromenes) constitute
an important class of scaffolds found in many naturally
occurring and synthetic molecules exhibiting unique biological
and pharmacological activities.1 Among many approaches for
the construction of chromene structures,2 those involving 2H-
chromenes3 have been well established while those for their
counterpart, 4H-chromenes,4 have been less developed. As
catalytic processes for the synthesis of functionalized 4H-
chromenes are concerned, they can be generally divided into
€
€
71, 231. (h) Lesch, B.; Torang, J.; Vanderheiden, S.; Brase, S. Adv. Synth. Catal.
2005, 347, 555. (i) Youn, S. W.; Eom, J. I. Org. Lett. 2005, 7, 3355.
(4) For recent examples on the synthesis of 4H-chromenes, see: (a) Uemura,
M.; Watson, I. D. G.; Katsukawa, M.; Toste, F. D. J. Am. Chem. Soc. 2009, 131,
3464. (b) Fan, J.; Wang, Z. Chem. Commun. 2008, 5381. (c) Nishibayashi, Y.;
Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 7900. (d) Fang,
Y.; Li, C. J. Org. Chem. 2006, 71, 6427. (e) van Otterlo, W. A. L.; Ngidi, E. L.;
Kuzvidza, S.; Morgans, G. L.; Moleele, S. S.; de Koning, C. B. Tetrahedron
2005, 61, 9996. (f) Shi, Y.-L.; Shi, M. Chem.;Eur. J. 2006, 12, 3374. (g) Guo,
Y.-W.; Shi, Y.-L.; Li, H.-B.; Shi, M. Tetrahedron 2006, 62, 5875. (h) Shi, Y.-L.;
Shi, M. Org. Lett. 2005, 7, 3057. (i) Ye, L.-W.; Sun, X.-L.; Zhu, C.-Y.; Tang, Y.
Org. Lett. 2006, 8, 3853.
(1) (a) Schweizer, E. E.; Meeder-Nycz, O. In Chromenes, Chromanes, Chromones;
Ellis, G. P., Ed.; Wiley-Interscience: New York, 1977. (b) Zeni, G.; Larock, R. C.
Chem. Rev. 2004, 104, 2285. (c) Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker, A. J.; Cao,
G.-Q.; Barluenga, S.; Mitchell, H. J. J. Am. Chem. Soc. 2000, 122, 9939. (d) Nicolaou,
K. C.; Pfefferkorn, J. A.; Mitchell, H. J.; Roecker, A. J.; Barluenga, S.; Cao, G.-Q.;
Affleck, R. L.; Lillig, J. E. J. Am. Chem. Soc. 2000, 122, 9954. (e) Nicolaou, K. C.;
Pfefferkorn, J. A.; Barluenga, S.; Mitchell, H. J.; Roecker, A. J.; Cao, G.-Q.
J. Am. Chem. Soc. 2000, 122, 9968. (f) Mori, J.; Iwashima, M.; Takeuchi, M.; Saito,
H. Chem. Pharm. Bull. 2006, 54, 391. (g) Kashiwada, Y.; Yamazaki, K.; Ikeshiro, Y.;
Yamagishi, T.; Fujioka, T.; Mihashi, K.; Mizuki, K.; Cosentino, L. M.; Fowke, K.;
Morris-Natschke, S. L.; Lee, K.-H. Tetrahedron 2001, 57, 1559. (h) Benslimane, A. F.;
Pouchus, Y. F.; Verbist, J. F.; Petit, J. Y.; Brion, J. D.; Welin, L. J. Clin. Pharmacol. 1995,
35, 298. (i) Rukachaisirikul, V.; Kamkaew, M.; Sukavisit, D.; Phongpaichit, S.;
Sawangchote, P.; Taylor, W. C. J. Nat. Prod. 2003, 66, 1531. (j) Kidwai, M.; Saxena,
S.; Khan, M. K. R.; Thukral, S. S. Bioorg. Med. Chem. Lett. 2005, 15, 4295.
(k) Dachriyanus; Salni; Sargent, M. V.; Skelton, B. W.; Soediro, I.; Sutisna, M.; White,
A. H.; Yulinah, E. Aust. J. Chem. 2002, 55, 229. (l) Shaheen, F.; Ahmad, M.; Khan,
S. N.; Hussain, S. S.; Anjum, S.; Tashkhodjaev, B.; Turgunov, K.; Sultankhodzhaev,
M. N.; Choudhary, M. I.; Rahman, A. Eur. J. Org. Chem. 2006, 2371. (m) Wang, J.-L.;
Liu, D. X.; Zhang, Z.-J.; Shan, S. M.; Han, X. B.; Srinivasula, S. M.; Croce, C. M.;
Alnemri, E. S.; Huang, Z. W. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7124.
(2) For a microreview article, see: Shi, Y.-L.; Shi, M. Org. Biomol. Chem.
2007, 5, 1499.
(5) Cacchi, S.; Misiti, D.; Palmieri, G. J. Org. Chem. 1982, 47, 2995.
(6) For reviews on tandem reactions, see: (a) Tietze, L. F.; Bell, H. P.;
Brasche, G., Eds. Domino Reactions in Organic Synthesis; Wiley-VCH:
Weinheim, Germany, 2006. (b) Enders, D.; Grondal, C.; H€uttl, M. R. M. Angew.
Chem., Int. Ed. 2007, 46, 1570. (c) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A.
Chem. Commun. 2003, 551. (d) Tietze, L. F. Chem. Rev. 1996, 96, 115.
(7) For recent examples on gold-catalyzed tandem reactions, see: (a)Luo, T.;
Schreiber, S. L. J. Am. Chem. Soc. 2009, 131, 5667. (b) Zhang, Y.-Q.; Chen,
Z.-H.; Tu, Y.-Q.; Fan, C.-A.; Zhang, F.-M.; Wang, A.-X.; Yuan, D.-Y. Chem.
ꢀ
~
ꢀ
Commun. 2009, 2706. (c) Barluenga, J.; Fernandez, A.; Rodrıguez, F.; Fananas,
F. J. Chem.;Eur. J. 2009, 15, 8121. (d) Yeom, H.-S.; Lee, J.-E.; Shin, S. Angew.
Chem., Int. Ed. 2008, 47, 7040. (e) Xie, C.; Zhang, Y.; Yang, Y. Chem. Commun.
2008, 4810. (f) Sanz, R.; Miguel, D.; Rodriguez, F. Angew. Chem., Int. Ed. 2008,
47, 7354. (g) Jin, T.; Yamamoto, Y. Org. Lett. 2008, 10, 3137.
(8) For reviews on gold catalysts, see: (a) Hashmi, A. S. K.; Hutching, G. J.
Angew. Chem., Int. Ed. 2006, 45, 7896. (b) Hashmi, A. S. K. Chem. Rev. 2007,
ꢀ
ꢀ~
107, 3180. (c) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Commun. 2007, 333.
(d) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (e) Arcadi, A. Chem.
Rev. 2008, 108, 3266. (f) Hashmi, A. S. K.; Rodolph, M. Chem. Soc. Rev. 2008,
ꢀ
ꢀ~
37, 1766. (g) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326.
(h) Skouta, R.; Li, C.-J. Tetrahedron 2008, 64, 4917. (i) Muzart, J. Tetrahedron
2008, 64, 5815. (j) Marion, N.; Nolan, S. P. Chem. Soc. Rev. 2008, 37, 1776.
DOI: 10.1021/jo902619x
r
Published on Web 01/14/2010
J. Org. Chem. 2010, 75, 1309–1312 1309
2010 American Chemical Society