A Novel Preparation of Pyridine–Urea Hybrids and Elucidation of Their Structures 367
5i: Colorless solid, mp 143–144◦C; 1H NMR (400
4a: Colorless solid, mp 166–167◦C; 1H NMR
(400 MHz, DMSO-d6) δ: 1.99 (s, 3H, CH3), 2.07 (s,
3H, CH3), 2.43–2.49 (m, 2H, CH2), 4.22–4.25 (m,
3H, CH2, CH), 5.21–5.23 (m, 1H, CH), 6.23–6.26 (m,
1H, CH), 7.49–7.58 (m, 5H, ArH), 7.77 (br s, 2H,
NH2), 8.17 (s, 1H, CH), 12.00 (br s, 1H, NH). 13C
NMR (100 MHz, DMSO-d6) δ: 20.5, 20.6, 37.0, 37.0,
64.4, 74.8, 82.7, 85.6, 85.7, 89.3, 89.4, 95.4, 95.5,
109.5, 115.1, 115.3, 115.4, 115.7, 127.7, 129.8, 130.2,
135.7, 142.9, 142.9, 150.5, 151.6, 160.5, 166.9, 167.0,
170.6, 170.7. IR (KBr): 3434, 3332, 3223, 3069, 2217,
1745, 1690, 1550 cm−1; ESI LRMS m/z: 563 (MH+),
585 (MNa+). HRMS (FAB): Calcd for C26H23N6O7S:
563.1349 (MH+), found 563.1353.
MHz, DMSO-d6) δ: 2.05 (s, 3H, CH3), 2.08 (s, 3H,
CH3), 2.26–2.28 (m, 2H, CH2), 4.08–4.12 (m, 3H, CH,
CH2), 5.12–5.14 (m, 1H, CH), 5.78–5.84 (m, 1H, CH),
7.36–7.70 (m, 4H, ArH), 8.74–8.93 (m, 3H, NH, 2 ×
CH), 11.08 (s, 1H, NH). 13C NMR (100 MHz, DMSO-
d6) δ: 23.3, 23.5, 39.4, 66.8, 77.6, 83.2, 83.5, 107.8,
117.5, 119.5, 119.7, 124.8, 127.7, 140.7, 140.8, 144.3,
154.9, 155.2, 167.9, 168.1, 172.7, 172.9. IR (KBr):
3300, 2226, 1736, 1680, 1534 cm−1; ESI LRMS m/z:
517 (MH+), 539 (MNa+). HRMS (FAB): Calcd for
C23H22FN4O7S: 517.1194 (MH+), found 517.1199.
5j: colorless solid, mp 177–178◦C; 1H NMR (400
MHz, DMSO-d6) δ: 1.94–2.03 (m, 2H, CH2), 3.37–3.39
(m, 2H, CH2), 3.67–3.68 (m, 1H, OH), 4.15–4.16 (m,
1H, CH), 4.82 (t, 1H, J = 5.2 Hz, OH), 5.07–5.08 (m,
1H, CH), 5.73–5.78 (m, 1H, CH), 7.36–7.70 (m, 4H,
ArH), 8.73 (d, 1H, CH, J = 2.0 Hz), 8.81 (d, 1H, NH,
J = 9.2 Hz,), 8.90 (d, 1H, CH, J = 2.0 Hz), 10.98
(s, 1H, NH). 13C NMR (100 MHz, DMSO-d6) δ: 62.5,
71.6, 80.8, 87.1, 105.6, 115.3, 117.2, 117.5, 122.6,
125.6, 138.5, 138.6, 142.0, 152.7, 152.8, 162.5, 165.0,
165.5, 165.8. IR (KBr): 3385, 3300, 2228, 1705, 1588,
1530 cm−1; ESI LRMS m/z: 433 (MH+), 455 (MNa+).
HRMS (FAB): Calcd for C19H18FN4O5S: 433.0983
(MH+), found 433.0996.
4b: Colorless solid, mp >250◦C; 1H NMR
(400 MHz, CD3OD) δ: 2.25–2.41 (m, 2H, CH2), 3.72–
3.84 (m, 2H, CH2), 3.95–3.96 (m, 1H, CH), 4.43–4.47
(m, 1H, CH), 6.32–6.36 (m, 1H, CH), 7.46–7.58 (m,
5H, ArH), 8.59 (s, 1H, CH). 13C NMR (100 MHz,
CD3OD) δ: 41.1, 61.3, 70.6, 70.6, 85.9, 88.1, 108.3,
108.4, 114.5, 114.7, 114.8, 115.0, 127.6, 129.3, 129.8,
135.6, 143.0, 143.1, 150.2, 150.9, 151.0, 160.2, 161.0,
167.8, 167.9. IR (KBr): 3455, 3195, 3047, 2216,
1711, 1683, 1554 cm−1; ESI LRMS m/z: 479 (MH+),
501 (MNa+). HRMS (FAB): Calcd for C22H19N6O5S:
479.1138 (MH+), found 479.1125.
Procedure for the Preparation of Compound 7
REFERENCES
To a suspension of 6 (0.5 mmol) and 2 (0.6 mmol)
in ethanol (2 mL), TEA (10 μL) was added. The sus-
pension was refluxed for 2 h. Volatiles were evapo-
rated in vacuo, and the residue was purified on silica
gel (hexane/ethyl acetate, 3:1) to yield 7 as colorless
solid.
[1] Pozharskii, A. F.; Soldatenkov, A. T.; Katritzky, A. R.
Heterocycles in Life and Society–An Introduction
to Heterocyclic Chemistry and Biochemistry and
the Role of Heterocycles in Science, Technology,
Medicine and Agriculture; Wiley: Chichester, UK,
1997.
[2] (a) O’Hagan, D. Nat Prod Rep 2000, 17, 435.
(b) Jayasuriya, H.; Herath, K. B.; Ondeyka, J. G.;
Polishook, J. D.; Bills, G. F.; Dombrowski, A. W.;
Springer, M. S.; Siciliano, S.; Malkowitz, L.; Sanchez,
M.; Guan, Z.; Tiwari, S.; Stevenson, D. W.; Borris,
R. P.; Singh, S. J. Nat Prod 2004, 67, 1036.
(c) Bouillon, A.; Voisin, A. S.; Robic, A.; Lancelot,
J. C.; Collot, V.; Rault, S. J. J Org Chem 2003, 68,
10178.
[3] (a) Chen, C.; Wilcoxen, K. M.; Huang, C. Q.; Xie, Y. F.;
McCarthy, J. R.; Webb, T. R.; Zhu, Y. F.; Saunders, J.;
Liu, X. J.; Chen, T. K.; Bozigian, H.; Grigoriadis, D.
E. J Med Chem 2004, 47, 4787. (b) Roppe, J.; Smith,
N. D.; Huang, D.; Tehrani, L.; Wang, B.; Anderson,
J.; Brodkin, J.; Chung, J.; Jiang, X.; King, C.; Munoz,
B.; Varney, M. A.; Prasit, P.; Cosford, N. D. P. J Med
Chem 2004, 47, 4645.
[4] Bordwell, F. G. Acc Chem Res 1988, 21, 456.
[5] (a) Burgess, K.; Linthicum, D. S.; Shin, H. Angew
Chem, Int Ed Engl 1995, 34, 907. (b) Burgess, K.;
Ibarzo, J.; Linthicum, D. S.; Russell, D. H.; Shin, H.;
Shitangkoon, A.; Totani, R.; Zhang, A. J. J Am Chem
Soc 1997, 119, 1556.
1
7: Colorless solid, H NMR (400 MHz, DMSO-
d6) δ: 7.52–7.85 (m, 7H, ArH, NH2), 8.73 (d, 1H, CH,
J = 2.0 Hz), 8.91 (d, 1H, CH, J = 2.0 Hz), 10.74 (s,
1H, NH). 13C NMR (100 MHz, DMSO-d6) δ: 105.8,
115.3, 125.7, 127.1, 130.2, 130.6, 135.9, 142.4, 152.6,
154.0, 165.3, 165.7. IR (KBr): 3381, 3333, 3215, 2235,
1729, 1678, 1583 cm−1; ESI LRMS m/z: 299 (MH+),
321 (MNa+). HRMS (FAB): Calcd for C14H11N4O2S:
299.0603 (MH+), found 299.0611.
Typical Procedure for the Preparation of 4a
To a suspension of 1a (0.5 mmol) and malononi-
trile (0.6 mmol) in ethanol (5 mL), Et3N (10 μL) was
added. The mixture was stirred for 0.2 h. Then thio-
phenol (0.6 mmol) was added, and the solution was
refluxed for another 1.8 h. Volatiles were evaporated
in vacuo, and the residue was purified on silica gel
(hexanes/ethyl acetate, 2:1) to yield 4a as colorless
solid. 4b was ALSO obtained in a similar manner.
[6] Nowick, J. S. Acc Chem Res 1999, 32, 287.
Heteroatom Chemistry DOI 10.1002/hc