pubs.acs.org/joc
A Method for the Synthesis of Substituted Quinolines via Electrophilic
Cyclization of 1-Azido-2-(2-propynyl)benzene
Zhibao Huo,† Ilya D. Gridnev,‡ and Yoshinori Yamamoto*,†,§
†Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan,
‡Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of
Technology, Tokyo 152-8580, Japan, and WPI-AIMR (WPI-Advanced Institute for Materials Research),
Tohoku University, Katahira 2-1-1, Aobaku, Sendai 980-8577, Japan
§
Received December 16, 2009
A new and efficient strategy for the synthesis of substituted quinolines via electrophilic cyclization is
developed. The intramolecular cyclization of 1-azido-2-(2-propynyl)benzene 1 proceeds smoothly in
the presence of electrophilic reagents (I2, Br2, ICl, NBS, NIS, and HNTf2) in CH3NO2 at room
temperature or in the presence of catalytic amounts of AuCl3/AgNTf2 in THF at 100 °C to afford the
corresponding quinolines 2 in good to high yields. In the case of the electrophilic reagents, E of 2 is
either I, Br, or H, depending on the reagent type, whileE of2 is H in the case ofthe electrophilic catalyst.
Introduction
Furthermore, quinoline derivatives have been shown to be
outstanding organocatalysts and are recognized as useful tools
for the highly enantioselective syntheses of chiral molecules.5
Because of their importance, much attention has been paid to
development efficient methods for the synthesis of substituted
quinolines. In recent years, a number of syntheses of quinoline
derivatives have been reported.6
Quinolines represent an important class of alkaloids because
of their wide utility. Substituted quinolines are often found as
structural frameworks in a large number of biologically active
natural products and pharmaceuticals.1 Examples include anti-
Alzheimer agents,2 anticancer agents,3 and antimalarial drugs.4
(1) Balasubramanian, M.; Keay, J. G. In Comprehensive Heterocyclic
Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.;
Pergamon Press: Oxford, UK, 1996; Vol. 5, pp 245-1260.
(5) (a) Gogoi, S.; Zhao, C.-G. Tetrahedron Lett. 2009, 50, 2252–2255.
(b) Marcelli, T.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed.
~
€
(2) (a) Camps, P.; El Achab, R.; Morral, J.; Munoz-Torrero, D.; Badia,
2006, 45, 7496–7504. (c) Enders, D.; Grondal, C.; Huttl, M. R. M. Angew.
~
A.; Banos, J. E.; Vivas, N. M.; Barril, X.; Orozco, M.; Luque, F. J. J. Med.
Chem., Int. Ed. 2007, 46, 1570–1581. (d) Biddle, M. M.; Lin, M.; Scheidt,
K. A. J. Am. Chem. Soc. 2007, 129, 3830–3831. (e) Wang, B.; Wu, F.; Wang,
Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2007, 129, 768–769. (f) Wang, Y.;
Liu, X.-F.; Deng, L. J. Am. Chem. Soc. 2006, 128, 3928–3930. (g) Tan, B.; Shi,
Z.; Chua, P. J.; Zhong, G. Org. Lett. 2008, 10, 3425–3428.
~
~
Chem. 2000, 43, 4657–4666. (b) Camps, P.; Gomez, E.; Munoz-Torrero, D.;
Badia, A.; Vivas, N. M.; Barril, X.; Orozco, M.; Luque, F. J. J. Med. Chem.
2001, 44, 4733–4736.
(3) (a) Martirosyan, A. R.; Rahim-Bata, R.; Freeman, A. B.; Clarke,
C. D.; Howard, R. L.; Strobl, J. S. Biochem. Pharmacol. 2004, 68, 1729–1738.
(b) Perzyna, A.; Klupsch, F.; Houssin, R.; Pommery, N.; Lemoine, A.;
(6) (a) Jones. G. In Comprehensive Heterocyclic Chemistry II; Katritzky,
A. R., Rees, C. W., Eds.; Pergamon Press: New York, 1996; Vol. 5, p 167-243.
(b) Zhang, X. X.; Campo, M. A.; Yao, T.; Larock, R. C. Org. Lett. 2005, 7, 763–
766. (c) Chelucci, G.; Manca, A.; Pinna, G. A. Tetrahedron Lett. 2005, 46, 767–
770. (d) Rodriguez, J. G.; Rios, C. D. L.; Lafuente, A. Tetrahedron 2005, 61,
9042–9051. (e) Yadav, J. S.; Rao, P. P.; Sreenu, D.; Rao, R. S.; Kumar, V. N.;
Nagaiah, K.; Prasad, A. R. Tetrahedron Lett. 2005, 46, 7249–7253. (f) Jia, C. S.;
Zhang, Z.; Tu, S. J.; Wang, G. W. Org. Biomol. Chem. 2006, 4, 104–110.
(g) Tanaka, S. Y.; Yasuda, M.; Baba, A. J. Org. Chem. 2006, 71, 800–803.
(h) Ichikawa, J.; Sakoda, K.; Moriyama, H.; Wada, Y. Synthesis 2006, 1590–1598.
(i) Chabert, J. F. D.; Chatelain, G.; Pellet-Rostaing, S.; Bouchu, D.; Lemaire, M.
Tetrahedron Lett. 2006, 47, 1015–1018. (j) Lin, X. F.; Cui, S. L.; Wang, Y. G.
Tetrahedron Lett. 2006, 47, 3127–3130. (k) Wang, G. W.; Jia, C. S.; Dong, Y. W.
Tetrahedron Lett. 2006, 47, 1059–1063. (l) Sakai, N.; Annaka, K.; Fujita, A.;
Sato, A.; Konakahara, T. J. Org. Chem. 2008, 73, 4160–4165. (m) Isobe, A.;
Takagi, J.; Katagiri, T.; Uneyama, K. Org. Lett. 2008, 10, 2657–2659.
ꢀ
Henichart, J. P. Bioorg. Med. Chem. Lett. 2004, 14, 2363–2365. (c) Charris, J.;
Martinez, P.; Dominguez, J.; Lopez, S.; Angel, J.; Espinoza, G. Heterocycl.
Commun. 2003, 9, 251–256. (d) Lamazzi, C.; Leonce, S.; Pfeiffer, B.; Renard,
P.; Guillaumet, G.; Rees, C. W.; Besson, T. Bioorg. Med. Chem. Lett. 2000,
10, 2183–2185. (e) Kaczmarek, L.; Pecznska-Czoch, W.; Osiadacz, J.;
Mordarski, M.; Sokalski, W. A.; Boratynski, J.; Marcinkowska, E.;
Glazman-Kusnierczyk, H.; Radzikowski, C. Bioorg. Med. Chem. 1999, 7,
2457–2464.
(4) (a) Joshi, A. A.; Viswanathan, C. L. Bioorg. Med. Chem. Lett. 2006,
16, 2613–2617. (b) Joshi, A. A.; Narkhede, S, S.; Viswanathan, C. L. Bioorg.
Med. Chem. Lett. 2005, 15, 73–76. (c) Portela, C.; Afonso, C. M. M.; Pinta,
M. M. M.; Ramos, M. J. Bioorg. Med. Chem. 2004, 12, 3313–3321.
(d) Billker, O.; Lindo, V.; Panico, M.; Etienne, A. E.; Paxton, T.; Dell, A.;
Rogers, M.; Sinden, R. E.; Morris, H. R. Nature 1998, 392, 289–292.
1266 J. Org. Chem. 2010, 75, 1266–1270
Published on Web 01/26/2010
DOI: 10.1021/jo902603v
r
2010 American Chemical Society