pubs.acs.org/joc
used as catalysts.2 Also recently, main group Lewis acids
Rhodium(I)-Catalyzed Cycloisomerization of
1,6-Enynes to Bicyclo[4.1.0]heptenes
have been used as catalysts.3 Through the cycloisomerization
reaction of enynes, various skeletal frames can be formed. In
particular, the selective synthesis of cyclopropane deriva-
tives4 is attracting a lot of attention, presumably due to their
widespread occurrence as a subunit in natural products.5 In
other respects, they can be considered as three-carbon do-
nors in the synthesis of larger rings.6 Especially, we recently
reported7 on a carbonylative [3þ3þ1] cycloaddition reaction
that uses two cyclopropyl groups in a molecule as two three-
carbon donors in the formation of large rings.
Sun Young Kim and Young Keun Chung*
Intelligent Textile System Research Center, and Department
of Chemistry, College of Natural Sciences, Seoul National
University, Seoul 151-747, Korea
Received October 26, 2009
Until now, several rhodium-catalyzed cycloisomerization
reactions have been disclosed.7,8 Dechy-Cabaret et al. repor-
ted8e on the Rh(I)-catalyzed cyclosiomerization of two oxygen-
tethered enynes derived from terpenoids. Recently, Chatani
reported8c,9 the Rh2(O2CCF3)4-catalyzed cycloisomerization of
enynes to cyclopropanated products. However, reports on the
Rh(I)-catalyzed cycloisomerization of enynes to cyclopropa-
nated products, namely bicyclo[4.1.0]heptenes, are still scarce.
And the substrate scope is limited and the data are fragmentary.
To complement the previous studies, we focused our efforts to
find a Rh(I)-catalyzed cycloisomerization of nitrogen-tethered
enynes leading to cyclopropanated products. In particular, in
relation to the previous research,7 we also had interest in the
Rh(I)-catalyzed tandem cycloisomerization and carbonyla-
tive [3þ3þ1] cycloaddition reactions of cyclopropylenyne
(Scheme 1). We herein report on the Rh(I)-catalyzed transfor-
mationof N-tetheredenynesto3-azabicyclo[4.1.0]hept-4-enes.
Our initial study used enyne 1a as a model substrate and
[RhCl(CO)(PPh3)2]/AgSbF6 as a catalyst. The catalytic sys-
tem [RhCl(CO)(PPh3)2]/AgSbF6 was previously used10 in
Efficient rhodium(I)-catalyzed cyclopropanation reactions
of nitrogen-tethered 1,6-enynes to azabicyclo[4.1.0]heptenes
are reported. Moreover, rhodium(I)-catalyzed tandem cy-
cloisomerization and carbonylative [3þ3þ1] cycloaddition
reactions of a cyclopropylenyne have been observed.
(4) (a) Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328. (b) Nieto-
ꢀ
Oberhuber, C.; Lopez, S.; Munoz, M. P.; Jimnez-Nunez, E.; Bunuel, E.;
Cardenas, D. J.; Echvarren, A. M. Chem.;Eur. J. 2006, 12, 1694.
~
ꢀ~
~
ꢀ
(5) (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem.
Rev. 2003, 103, 977. (b) Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem.
Rev. 2003, 103, 1625.
The transition metal-catalyzed cycloisomerization of en-
ynes is a powerful method for accessing cyclic structures
from acyclic precursors of substantially less molecular com-
plexity.1 A variety of transition metal compounds have been
(6) (a) Komagawa, S.; Saito, S. Angew. Chem., Int. Ed. 2006, 45, 2446. (b)
Zhao, L.; de Meijere, A. Adv. Synth. Catal. 2006, 348, 2484. (c) Takasu, K.;
Nagao, S.; Ihara, M. Adv. Synth. Catal. 2006, 348, 2376. (d) Kurahashi, T.; de
Meijere, A. Angew. Chem., Int. Ed. 2005, 44, 7881. (e) Kamitani, A.; Chatani,
N.; Morimoto, T.; Murai, S. J. Org. Chem. 2000, 65, 9230. (f) Murakami, M.;
Itami, K.; Ubukata, M.; Tsuji, I.; Ito, Y. J. Org. Chem. 1998, 63, 4.
(7) Kim, S. Y.; Lee, S. I.; Choi, S. Y.; Chung, Y. K. Angew. Chem., Int. Ed.
2008, 47, 4914.
(1) For recent reviews, see: (a) Lloyd-Jones, G. C. Org. Biomol. Chem.
2003, 1, 215. (b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102,
ꢀ
813. (c) Mendez, M.; Mamane, V.; Furstner, A. Chemtracts 2003, 16, 397. (d)
Trost, B. M.; Krische, M. J. Synlett 1998, 1.
(2) For Pt and Au, see: (a) Sun, J.; Conley, M. P.; Zhang, L.; Kozmin, S.
A. J. Am. Chem. Soc. 2006, 128, 9705. (b) Barluenga, J.; Dieguez, A.;
Fernandez, A.; Rodiriguez, F.; Fananas, F. J. Angew. Chem., Int. Ed.
2006, 45, 2091. (c) Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 2006, 45,
€
(8) (a) Oonishi, Y.; Saito, A.; Mori, M.; Sato, Y. Synthesis 2009, 969. (b)
Nicolaou, K. C.; Li, A.; Ellery, S. P.; Edmonds, D. J. Angew. Chem., Int. Ed.
2009, 48, 6293. (c) Lee, S. I.; Chatani, N. Chem. Commun. 2009, 371. (d)
Brummond, K. M.; Yan, B. L. Synlett. 2008, 2302. (e) Costes, P.; Weckesser,
J.; Dechy-Cabaret, O.; Urrutigoıty, M.; Kalck, P. Appl. Organomet. Chem.
2008, 22, 211. (f) Liu, F.; Liu, Q.; He, M.; Zhang, X.; Lei, A. Org. Biomol.
Chem. 2007, 5, 3531. (g) DeBoef, B.; Counts, W. R.; Gilbertson, S. R. J. Org.
Chem. 2007, 72, 799. (h) Tanaka, K.; Otake, Y.; Hirano, M. Org. Lett. 2007,
9, 3953. (i) Kim, H.; Lee, C. B. J. Am. Chem. Soc. 2006, 128, 6336. (j) Kim, H.;
Lee, C. B. J. Am. Chem. Soc. 2005, 127, 10180. (k) Fairlamb, I. J. S. Angew.
Chem., Int. Ed. 2004, 43, 1048. (l) Mikami, K.; Yusa, Y.; Hatano, M.;
Wakabayashi, K.; Aikawa, K. Chem. Commun. 2004, 98. (m) Tong, X. F.;
Zhang, Z. G.; Zhang, X. M. J. Am. Chem. Soc. 2003, 125, 6370. (n) Shibata,
T.; Takesue, Y.; Kadowaki, S.; Takagi, K. Synlett 2003, 268. (o) Lei, A. W.;
Waldkirch, J. P.; He, M. S.; Zhang, X. M. Angew. Chem., Int. Ed. 2002, 41,
4526.
~
2901. For Pd, see: (d) Bray, K. L.; Llyod-Jones, G. C.; Munoz, M. P.;
Saltford, P. A.; Tan, E. H. P.; Tyler-Mahon, A. R.; Worthington, P. A.
Chem.;Eur. J. 2006, 12, 8650. For Ru and Rh, see: (e) Chatani, N.;
Kataoka, K.; Murai, S.; Furukawa, N.; Seki, Y. J. Am. Chem. Soc. 1998,
120, 9104. (f) Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Angew. Chem.,
Int. Ed. 2005, 44, 6630. (g) Lei, A. W.; Waldkirch, J. P.; He, M. S.; Zhang, X.
M. Angew. Chem., Int. Ed. 2002, 41, 4526. For Co, see: (h) Han, S. D.;
Anderson, D. R.; Bond, A. D.; Chu, H. V.; Disch, R. L.; Holmes, J. M.;
Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. Angew.
Chem., Int. Ed. 2002, 41, 3227. (i) Genin, E.; Antoniotti, S.; Michelet, V.;
Genet, J. P. Angew. Chem., Int. Ed. 2005, 44, 4949.
(9) Ota, K.; Lee, S. I.; Tang, J.-M.; Takachi, M.; Nakai, H.; Morimoto,
T.; Sakurai, H.; Kataoka, K.; Chatani, N. J. Am. Chem. Soc. 2009, 131,
15203.
(10) Wender, P. A.; Deschamps, N. M.; Gamber, G. G. Angew. Chem.,
Int. Ed. 2003, 42, 1853.
(3) (a) Kim, S. M.; Lee, S. I.; Chung, Y. K. Org. Lett. 2006, 8, 5425. (b)
Simmons, E. M.; Sapong, R. Org. Lett. 2006, 8, 2883. (c) Chatani, N.; Inoue,
H.; Kotsuma, T.; Murai, S. J. Am. Chem. Soc. 2002, 124, 10294. (d) Inoue,
H.; Chatani, N.; Murai, S. J. Org. Chem. 2002, 67, 1414.
DOI: 10.1021/jo902273x
r
Published on Web 01/22/2010
J. Org. Chem. 2010, 75, 1281–1284 1281
2010 American Chemical Society