LETTER
Site-Selective Suzuki–Miyaura Reactions of 2,3,5-Tribromothiophene
3313
Noma, N.; Shirota, Y. Appl. Phys. Lett. 1997, 70, 699.
bon C-3. The latter position is least reactive because of
electronic reasons.
(g) Noda, T.; Imae, I.; Noma, N.; Shirota, Y. Adv. Mater.
1997, 9, 239. (h) Cui, Y.; Zhang, X.; Jenekhe, S. A.
Marcomolecules 1999, 32, 3824. (i) Thayumanavan, S.;
Mendez, J.; Marder, S. R. J. Org. Chem. 1999, 64, 4289.
(5) Mori, Y.; Taneda, S.; Hayashi, H.; Sakushima, A.; Kamata,
K.; Suzuki, A. K.; Yoshino, S.; Sakata, M.; Sagai, M.; Seki,
K.-i. Biol. Pharm. Bull. 2002, 25, 145.
(6) (a) Liu, P.; Zhang, Y.; Feng, G.; Hu, J.; Zhou, X.; Zhao, Q.;
Xu, Y.; Tong, Z.; Deng, W. Tetrahedron 2004, 60, 5259.
(b) Huss, U.; Ringbom, T.; Perera, P.; Bohlin, L.; Vasaenge,
M. J. Nat. Prod. 2002, 65, 1517. (c) Albano, V. G.;
Bandini, M.; Melucci, M.; Monari, M.; Piccinelli, F.;
Tommasi, S.; Umani-Ronchi, A. Adv. Synth. Catal. 2005,
11, 1507. (d) Melucci, M.; Barbarella, G.; Zambianchi, M.;
Pietro, P. D.; Bongini, A. J. Org. Chem. 2004, 69, 4821.
(e) Ciofalo, M.; Petruso, S.; Schillaci, D. Planta Med. 1996,
62, 374.
(7) (a) Guillet, G.; Philogene, B. J. R.; O’Meara, J.; Durst, T.;
Arnason, J. T. Phytochemistry 1997, 46, 495. (b) Kawai,
K.; Sugimoto, A.; Yoshida, H.; Tojo, S.; Fujitsuka, M.;
Majima, T. Bioorg. Med. Chem. Lett. 2005, 20, 4547.
(c) Bohlmann, F.; Zdero, R. Chem. Ber. 1970, 103, 834.
(8) Pereira, R.; Iglesias, B.; de Lera, A. R. Tetrahedron 2001,
57, 7871.
(9) Carpita, A.; Rossi, R. Gazz. Chim. Ital. 1985, 115, 575.
(10) Hawkins, D. W.; Iddon, B.; Longthorne, D. S.; Rosyk, P. J.
J. Chem. Soc., Perkin Trans. 1 1994, 2735.
In conclusion, we have reported the first Suzuki–Miyaura
reactions of 2,3,5-tribromothiophene. The reaction with
one, two, and three equivalents of arylboronic acids re-
sulted in formation of 5-aryl-2,3-dibromothiophenes, 2,5-
diaryl-3-bromothiophenes, and 2,3,5-triarylthiophenes
with very good site selectivity, respectively.
Acknowledgment
Financial support by the DAAD (scholarship for S.-M.T.T.) and by
the State of Mecklenburg-Vorpommern is gratefully acknowled-
ged.
References and Notes
(1) Review: Schröter, S.; Stock, C.; Bach, T. Tetrahedron 2005,
61, 2245.
(2) (a) Chandra, R.; Kung, M.-P.; Kung, H. F. Bioorg. Med.
Chem. Lett. 2006, 16, 1350. (b) Athri, P.; Wenzler, T.; Ruiz,
P.; Brun, R.; Boykin, D. W.; Tidwell, R.; Wilson, W. D.
Bioorg. Med. Chem. 2006, 14, 3144. (c) Han, Y.; Giroux,
A.; Lepine, C.; Latiberte, F.; Huang, Z.; Perrier, H.; Bayly,
C. I.; Young, R. N. Tetrahedron 1999, 55, 11669.
(d) Mortensen, D. S.; Rodriguez, A. L.; Carlson, K. E.; Sun,
J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med.
Chem. 2001, 44, 3838. (e) Gallant, M.; Belley, M.; Carriere,
M.-C.; Chateauneuf, A.; Denis, D.; Lachance, N.;
(11) Carpita, A.; Rossi, R. Gazz. Chim. Ital. 1985, 115, 575.
(12) Yamazaki, T.; Murata, Y.; Komatsu, K.; Furukawa, K.;
Morita, M.; Maruyama, N.; Yamao, T.; Fujita, S. Org. Lett.
2004, 6, 4865.
Lamontagne, S.; Metters, K. M.; Sawyer, N.; Slipetz, D.;
Truchon, J. F.; Labelle, M. Bioorg. Med. Chem. Lett. 2003,
13, 3813. (f) Givens, M. D.; Dykstra, C. C.; Brock, K. V.;
Stringfellow, D. A.; Kumar, A.; Stephens, C. E.; Goker, H.;
Boykin, D. W. Antimicrob. Agents Chemother. 2003, 47,
2223. (g) Brendle, J. J.; Outlaw, A.; Kumar, A.; Boykin, D.
W.; Patrick, D. A.; Tidwell, R. R.; Werbovetz, K. A.
Antimicrob. Agents Chemother. 2002, 46, 797. (h) Vachal,
P.; Toth, L. M.; Hale, J. J.; Yan, L.; Mills, S. G.; Chrebet, G.
L.; Koehane, C. A.; Hajdu, R.; Milligan, J. A.; Rosenbach,
M. J.; Mandela, S. Bioorg. Med. Chem. Lett. 2006, 16, 3684.
(i) Gonzalez, J. L.; Stephens, C. E.; Wenzler, T.; Brun, R.;
Tanious, F. A.; Wilson, W. D.; Barszcz, T.; Werbovetz, K.
A.; Boykin, D. W. Eur. J. Med. Chem. Chim. Ther. 2007, 42,
552.
(13) For an isolated example of a polymer synthesis using the
Suzuki reaction, see: Xu, M.-H.; Zhang, H.-C.; Pu, L.
Macromolecules 2003, 36, 2689.
(14) Neenan, T. X.; Whitesides, G. M. J. Org. Chem. 1988, 53,
2489.
(15) Eichhorn, S. H.; Paraskos, A. J.; Kishikawa, K.; Swager,
T. M. J. Am. Chem. Soc. 2002, 124, 12742.
(16) Dang, T. T.; Dang, T. T.; Rasool, N.; Villinger, A.; Langer,
P. Adv. Synth. Catal. 2009, 351, 1595.
(17) Dang, T. T.; Villinger, A.; Langer, P. Adv. Synth. Catal.
2008, 350, 2109.
(18) General Procedure for the Synthesis of 2,3-Dibromo-5-
arylthiophene 2
To a mixture of 1 (0.159 g, 0.5 mmol), arylboronic acid (0.55
mmol), Pd(PPh3)4 (5 mol%) were added a mixture of 1,4-
dioxane and toluene (1:1, 5 mL) and an aq solution of K2CO3
(2 mL, 2 M) under argon atmosphere. The reaction mixture
was stirred at 100 °C for 8 h and was subsequently allowed
to cool to 20 °C. The solution was poured into H2O and
CH2Cl2 (25 mL each) and the organic and the aqueous layer
were separated. The latter was extracted with CH2Cl2 (3 × 25
mL), dried (Na2SO4), filtered, and concentrated in vacuo.
The residue was purified by flash column chromatography
(flash silica gel, n-heptane).
Synthesis of 2,3-Dibromo-5-p-tolylthiophene (2a)
Starting with 1 (0.320 g, 1.0 mmol) and 4-tolylboronic acid
(0.149 g, 1.1 mmol), 2a was isolated (0.150 g, 47%) as a
colorless solid, mp 83–85 °C. 1H NMR (300 MHz, CDCl3):
d = 2.26 (s, 3 H, CH3), 6.94 (s, 1 H, Ar), 7.08 (d, 3J = 8.0 Hz,
2 H, Ar), 7.26 (d, 3J = 8.2 Hz, 2 H, Ar). 13C NMR (62 MHz,
CDCl3): d = 21.3 (CH3), 109.4, 114.5 (CBr), 125.0, 125.3,
128.7, 129.4, 129.8 (CH, Ar), 130.0, 138.6, 145.6 (C). IR
(KBr): n = 3091 (w), 3019 (w), 2918 (w), 2852 (w), 1498
(m), 1433 (w), 1118 (w), 997 (w), 821 (w), 801 (m), 550 (w)
cm–1. GC-MS (EI, 70 eV): m/z (%) = 334 [M+, 81Br, 81Br],
(3) (a) Ahmad, V. U.; Alam, N.; Qaisar, M. Phytochemistry
1998, 49, 259. (b) Ahmad, V. U.; Alam, N. Phytochemistry
1996, 42, 733. (c) Kroutil, W.; Staempfli, A. A.; Dahinden,
R.; Jörg, M.; Müller, U.; Pachlatko, J. P. Tetrahedron 2002,
58, 2589. (d) Nakajima, S.; Kawazu, K. Agric. Biol. Chem.
1980, 44, 1529. (e) Margl, L.; Eisenreich, W.; Adam, P.;
Bacher, A.; Zenk, M. H. Phytochemistry 2001, 58, 875.
(f) Bohlmann, F.; Zdero, C.; King, R. M.; Robinson, H.
Phytochemistry 1983, 22, 1035. (g) Fokialakis, N.; Cantrell,
C. L.; Duke, S. O.; Skaltsounis, A. L.; Wedge, D. E. J. Agric.
Food Chem. 2006, 54, 1651.
(4) For oligothiophenes with low-lying triplet states, see:
(a) Garnier, F. Angew. Chem., Int. Ed. Engl. 1989, 28, 513.
(b) Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.;
Deloffre, F.; Servet, B.; Ries, S.; Alnot, P. J. Am. Chem. Soc.
1993, 115, 8716. (c) Garnier, F.; Hajlaoui, R.; Yassar, A.;
Srivastava, P. Science 1994, 265, 1684. (d) Dodabalapur,
A.; Torsi, L.; Katz, H. E. Science 1995, 268, 270.
(e) Dodabalapur, A.; Rothberg, L. J.; Fung, A. W. P.; Katz,
H. E. Science 1996, 272, 1462. (f) Noda, T.; Ogawa, H.;
Synlett 2009, No. 20, 3311–3314 © Thieme Stuttgart · New York