T. Hashimoto et al. / Tetrahedron Letters 51 (2010) 761–763
763
FeCl3/AgOTf
lyst system. Especially, in the case of electron-rich arenes, the iron-
catalyzed hydroarylation proceeded well and gave cinnamic acids
in moderate to high yields. Even FeCl3 only is capable of catalyzing
the hydroarylation reaction, but the addition of AgOTf enhances
the reactivity. Further investigation of the iron-catalyzed hydro-
arylation of alkynes is now in progress.
Ar
+
CO2H
Ar
H
2
CO2H
TFA, DCE
60 oC, 15 h
1
2
4
Scheme 3.
References and notes
FeCl3 + 3AgOTf
3AgCl
Fe(OTf)3
CO2H
1. (a) Ritleng, V.; Sirlin, C.; Pfeffer, M.. Chem. Rev. 2002, 102, 1731–1769; (b)
Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698–1712; (c) Kakiuchi, F.; Chatani,
N. Adv. Synth. Catal. 2003, 345, 1077–1101; (d) Kakiuchi, F.; Murai, S. In
Activation of Unreactive Bonds and Organic Synthesis; Murai, S., Ed.; Springer:
Berlin, 1999; pp 47–79; (e) Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97,
2879–2932; (f) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633–
639; (g) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826–834; (h) Crabtree,
R. H. J. Chem. Soc., Dalton Trans. 2001, 2437–2450; (i) Guari, Y.; Sabo-Etienne, S.;
Chaudret, B. Eur. J. Inorg. Chem. 1999, 1047–1055; (j) Kakiuchi, F.; Kochi, T.
Synthesis 2008, 3013–3039.
Ar
CO2H
H
(TfO)3Fe
(TfO)3Fe
(TfO)3Fe
Fe(OTf)3
CO2H
H
O
O
C
OH
O
or
C
C C
HC
C
HC C C
Ar
OH
OH
2. (a) Kitamura, T. Eur. J. Org. Chem. 2009, 1111–1125; (b) Nevado, C.; Echavarren,
A. M. Synthesis 2005, 167–182.
3. Pd: (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1996, 118, 6305–6306; (b)
Trost, B. M.; Toste, F. D.; Greenman, K. J. Am. Chem. Soc. 2003, 125, 4518–4526;
(c) Viciu, M. S.; Stevens, E. D.; Petersen, J. L.; Nolan, S. P. Organometallics 2004,
23, 3752–3755; (d) Tsukada, N.; Mitsuboshi, T.; Setoguchi, H.; Inoue, Y. J. Am.
Chem. Soc. 2003, 125, 12102–12103; (e) Jia, C.; Piao, D.; Kitamura, T.; Fujiwara,
Y. J. Org. Chem. 2000, 65, 7516–7522; (f) Lu, W.; Jia, C.; Kitamura, T.; Fujiwara, Y.
Org. Lett. 2000, 2, 2927–2930; (g) Oyamada, J.; Jia, C.; Fujiwara, Y.; Kitamura, T.
Chem. Lett. 2002, 31, 380–381; (h) Kitamura, T.; Yamamoto, K.; Oyamada, J.; Jia,
C.; Fujiwara, Y. Bull. Chem. Soc. Jpn. 2003, 76, 1889–1895; (i) Kotani, M.;
Yamamoto, K.; Oyamada, J.; Fujiwara, Y.; Kitamura, T. Synthesis 2004, 1466–
1470.
4. Pt: (a) Pastine, S. J.; Youn, S. W.; Sames, D. Org. Lett. 2003, 5, 1055–1058; (b)
Pastine, S. J.; Youn, S. W.; Sames, D. Tetrahedron 2003, 59, 8859–8868; (c)
Oyamada, J.; Kitamura, T. Tetrahedron Lett. 2005, 46, 3823–3827; (d) Oyamada,
J.; Kitamura, T. Chem. Lett. 2005, 34, 1430–1431; (e) Oyamada, J.; Kitamura, T.
Tetrahedron 2007, 63, 12754–12762; (f) Oyamada, J.; Hashimoto, T.; Kitamura J.
Organomet. Chem. 2009, 694, 3626–3632.
5. Pd and Pt: (a) Jia, C.; Piao, D.; Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara, Y.
Science 2000, 287, 1992–1995; (b) Jia, C.; Lu, W.; Oyamada, J.; Kitamura, T.;
Matsuda, K.; Irie, M.; Fujiwara, Y. J. Am. Chem. Soc. 2000, 122, 7252–7263; (c)
Jia, C.; Kitamura, T.; Fujiwara, Y. J. Synth. Org. Chem. Jpn. 2001, 59, 1052–1061.
6. Bolm, C.; Legros, J.; Paih, J. L.; Zani, L. Chem. Rev. 2004, 104, 6217–6254.
7. (a) Zotto, C. D.; Wehbe, J.; Virienx, D.; Campagne, J.-M. Synlett 2008, 2033–
2035; (b) Li, R.; Wang, S. R.; Lu, W. Org. Lett. 2007, 9, 2219–2222.
8. General procedure for FeCl3/AgOTf-catalyzed hydroarylation of propiolic acid: After
a mixture of FeCl3 (0.4 mmol) and AgOTf (1.2 mmol) in TFA and DCE was stirred
at room temperature for 10 min, arene (4 mmol) and propiolic acid (2 mmol)
were added and then the mixture was stirred at 60 °C for 15 h. The reaction
mixture was poured into water, neutralized with NaHCO3, and washed with
ether. The ethereal layer was extracted with 2 M NaOH. The aqueous layer was
washed with ether, acidified with HCl (ca. 36%), and extracted with CH2Cl2. The
organic layer was dried over anhydrous Na2SO4 and concentrated under
reduced pressure to give cinnamic acids as solids. The products were identified
by spectral data (1H and 13C NMR) and the data were compared with those in
the literature. Representative spectral data are as follows: Compound 3a (a
mixture of E and Z isomers):4f 1H NMR (300 MHz, CDCl3) d 2.16 (s, CH3), 2.26 (s,
CH3), 2.27 (s, CH3), 2.31 (s, CH3), 6.03 (d, J = 16 Hz, @CH), 6.10 (d, J = 12 Hz,
@CH), 6.82 (s, ArH), 6.88 (s, ArH), 7.08 (d, J = 12 Hz, @CH), 7.91 (d, J = 16 Hz,
@CH), 10.80 (br s, CO2H); 13C NMR (75 MHz, CDCl3) d 20.00, 20.89, 122.07,
127.89, 131.99, 134.44, 136.92, 146.28, 171.10. Compound 3h:10 1H NMR
(300 MHz, CDCl3) d 3.01 (d, J = 7.5 Hz, 2H, CH2), 3.75 (s, 6H, OCH3), 4.42 (t,
J = 7.5 Hz, 1H, CH), 6.80 (d, J = 9 Hz, 2H, ArH), 7.11 (d, J = 9 Hz, 2H, ArH), 8.71 (br
s, 1H, CO2H); 13C NMR (75 MHz, CDCl3) d 40.72, 45.10, 55.20, 113.99, 128.47,
135.78, 158.17, 177.94.
Ar
H
H
Scheme 4.
methylphenol (1f) the hydroarylation proceeded well (entries 1
and 6), but for moderately activated or unactivated arenes the
reaction gave low yields of the hydroarylation products 3 (entries
2–5). On the other hand, anisole (1g), 1,4-dimethoxybenzene
(1h), and 4-methoxytoluene (1i) underwent double hydroarylation
to give 3,3-diarylpropionic acids 4 (entries 7–9).
In the FeCl3/AgOTf-catalyzed hydroarylation reaction of propi-
olic acid, there exist the following characteristic results to consider
the reaction mechanism. (1) The hydroarylation reaction catalyzed
by FeCl3/AgOTf in TFA provided trans-cinnamic acids as the major
products. This strongly contrasts with the reaction catalyzed by
platinum compounds where the cis-cinnamic acids are formed
selectively.5 (2) In the present reaction, isomerization of cis to
trans-cinnamic acids is not important because the hydroarylation
with FeCl3Á6H2O under similar conditions gives cis-cinnamic acid
3a as the major isomer. (3) Activated, electron-rich arenes show
high reactivity.
A proposed mechanism is shown in Scheme 4. First, FeCl3 reacts
with AgOTf to generate a highly cationic, reactive Fe(OTf)3, which
interacts with propiolic acid to form a vinyl cation. Since a primary
open vinyl cation is very unstable and the formation is not possi-
ble,9 Fe(OTf)3 should coordinate with the oxygen atom acid and
activate the propiolic acid. Formation of a bridged vinyl cation is
possible but it may be ruled out by judging from the major forma-
tion of the trans isomer of cinnamic acids. The resulting vinyl cat-
ion undergoes electrophilic aromatic substitution with an electron-
rich arene and finally generates a product by protonation. At the
same time, regeneration of Fe(OTf)3 is concomitant and completes
the catalytic cycle.
9. (a) Rappoport, Z.; Stang, P. J. Dicoordinated Carbocations; John Wiley & Sons:
Chichester, 1997; (b) Stang, P. J.; Rappoport, Z.; Hanack, M.; Subramanian, L. R.
Vinyl Cations; Academic Press: New York, 1979.
10. Bergmann, F.; Weizmann, M.; Dimant, E.; Patai, J.; Szmuskowics, J. J. Am. Chem.
Soc. 1948, 70, 1612–1617.
In conclusion, we have demonstrated that iron-catalyzed
hydroarylation of propiolic acid with various arenes in TFA. The
reaction proceeded efficiently in the presence of FeCl3/AgOTf cata-