10.1002/adsc.201800826
Advanced Synthesis & Catalysis
2017, 1, 0025; g) S. Z. Tasker, E. A. Standley, T. F.
Jamison, Nature 2014, 509, 299.
Conclusion
In conclusion, we have developed a highly versatile
[5]
[6]
[7]
a) P. Basnet, S. Thapa, D. A. Dickie, R. Giri, Chem.
Commun. 2016, 52, 11072-11075; b) Y.-Y. Sun, J. Yi,
X. Lu, Z.-Q. Zhang, B. Xiao, Y. Fu, Chem. Commun.
2014, 50, 11060-11062; c) Y. Zhou, W. You, K. B.
Smith, M. K. Brown, Angew. Chem. 2014, 126, 3543-
3547; d) Y. Zhou, W. You, K. B. Smith, M. K. Brown,
Angewandte Chemie International Edition 2014, 53,
3475-3479.
base promoted nucleophilic substitution protocol.
Only a mild metal phosphate base is needed; the mild
conditions led to excellent functional group tolerance.
Our metal-free condition is orthogonal towards the
transition metal catalyzed Suzuki reaction, which
means that our method is complementary to the
classic Suzuki coupling for the synthesis of complex
target molecules.
a) R. B. Bedford, P. B. Brenner, E. Carter, T. W.
Carvell, P. M. Cogswell, T. Gallagher, J. N. Harvey, D.
M. Murphy, E. C. Neeve, J. Nunn, D. R. Pye, Chem.
Eur. J. 2014, 20, 7935-7938; b) T. Hashimoto, T.
Hatakeyama, M. Nakamura, J. Org. Chem. 2012, 77,
1168-1173; c) T. Hatakeyama, T. Hashimoto, K. K. A.
D. S. Kathriarachchi, T. Zenmyo, H. Seike, M.
Nakamura, Angew. Chem. 2012, 124, 8964-8967.
a) R. J. Armstrong, V. K. Aggarwal, Synthesis 2017, 49,
3323-3336; b) R. J. Armstrong, W. Niwetmarin, V. K.
Aggarwal, Org. Lett. 2017, 19, 2762-2765; c) R. J.
Armstrong, C. Sandford, C. Garcia-Ruiz, V. K.
Aggarwal, Chem. Commun. 2017, 53, 4922-4925; d) V.
Ganesh, M. Odachowski, V. K. Aggarwal, Angew.
Chem. Int. Ed. 2017, 56, 9752-9756; e) P. Knochel, D.
Ziegler, Synfacts 2017, 13, 1081; f) D. Leonori, V. K.
Aggarwal, Angew. Chem. Int. Ed. 2015, 54, 1082-1096;
g) J. Llaveria, D. Leonori, V. K. Aggarwal, J. Am.
Chem. Soc. 2015, 137, 10958-10961; h) M. Odachowski,
A. Bonet, S. Essafi, P. Conti-Ramsden, J. N. Harvey, D.
Leonori, V. K. Aggarwal, J. Am. Chem. Soc. 2016, 138,
9521-9532; i) Y. Wang, A. Noble, C. Sandford, V. K.
Aggarwal, Angew. Chem. Int. Ed. 2017, 56, 1810-1814;
j) C. M. Wilson, V. Ganesh, A. Noble, V. K. Aggarwal,
Angew. Chem. Int. Ed.
a) A. Wilsily, F. Tramutola, N. A. Owston, G. C. Fu, J.
Am. Chem. Soc. 2012, 134, 5794-5797; b) S. L.
Zultanski, G. C. Fu, J. Am. Chem. Soc. 2011, 133,
15362-15364; c) Z. Lu, A. Wilsily, G. C. Fu, J. Am.
Chem. Soc. 2011, 133, 8154-8157; d) N. A. Owston, G.
C. Fu, J. Am. Chem. Soc. 2010, 132, 11908-11909.
a) V. Ortega, E. del Castillo, A. G. Csákÿ, Org. Lett.
2017, 19, 6236-6239; b) Z. He, F. Song, H. Sun, Y.
Huang, J. Am. Chem. Soc. 2018, 140, 2693-2699; c) S.
Roscales, A. G. Csaky, Chem. Soc. Rev. 2014, 43, 8215-
8225; d) U. Mitsuhiro, N. Daiki, M. Takahiro, R.
Ilhyong, Eur. J. Org. Chem. 2017, 2017, 7040-7045; e)
S. Alberto, B. Valentina, B. Matteo, M. Ugo, Eur. J.
Org. Chem. 2012, 2012, 264-268; f) L. David, P. Marc,
M. Bastien, B. Christophe, B. L. Sophie, G. Vincent,
Chem. Eur. J. 2015, 21, 11001-11005.
Acknowledgements
We are grateful to the National Science Foundation of
China for financial support (NSFC-21472018,
21672035) and to the National Science Foundation
(CHE-1401700). SL is thankful to the China
Scholarship Council for financial support.
References
[1]
a) E. Negishi, Acc. Chem. Res. 1982, 15, 340-348; b) D.
Milstein, J. K. Stille, J. Am. Chem. Soc. 1979, 101,
4981-4991; c) W. A. Herrmann, K. Öfele, D. v.
Preysing, S. K. Schneider, J. Organomet. Chem. 2003,
687, 229-248; d) G. Cahiez, O. Gager, J. Buendia,
Angew. Chem. Int. Ed. 2010, 49, 1278-1281; e) G.
Cahiez, C. Chaboche, M. Jézéquel, Tetrahedron 2000,
56, 2733-2737; f) G. Cahiez, O. Gager, J. Buendia,
Synlett 2010, 2010, 299-303; g) A. He, J. R. Falck, J.
Am. Chem. Soc. 2010, 132, 2524-2525; h) I. Tatsuo, A.
Shigeru, M. Norio, S. Akira, Chem. Lett. 1992, 21, 691-
694; i) D. H. Burns, J. D. Miller, H.-K. Chan, M. O.
Delaney, J. Am. Chem. Soc. 1997, 119, 2125-2133; j)
C.-T. Yang, Z.-Q. Zhang, Y.-C. Liu, L. Liu, Angew.
Chem. Int. Ed. 2011, 50, 3904-3907; k) Z. Lu, G. C. Fu,
Angew. Chem. 2010, 122, 6826-6828; l) P. M. Lundin,
G. C. Fu, J. Am. Chem. Soc. 2010, 132, 11027-11029;
m) B. Saito, G. C. Fu, J. Am. Chem. Soc. 2008, 130,
6694-6695; n) B. Saito, G. C. Fu, J. Am. Chem. Soc.
2007, 129, 9602-9603; o) J. Zhou, G. C. Fu, J. Am.
Chem. Soc. 2004, 126, 1340-1341; p) T. Hatakeyama, T.
Hashimoto, Y. Kondo, Y. Fujiwara, H. Seike, H.
Takaya, Y. Tamada, T. Ono, M. Nakamura, J. Am.
Chem. Soc. 2010, 132, 10674-10676.
[8]
[9]
[2]
a) J. H. Kirchhoff, C. Dai, G. C. Fu, Angew. Chem. Int.
Ed. 2002, 41, 1945-1947; b) M. R. Netherton, C. Dai, K.
Neuschütz, G. C. Fu, J. Am. Chem. Soc. 2001, 123,
10099-10100.
[10]
a) C. Li, Y. Zhang, Q. Sun, T. Gu, H. Peng, W. Tang, J.
Am. Chem. Soc. 2016, 138, 10774-10777; b) G. Wu, S.
Xu, Y. Deng, C. Wu, X. Zhao, W. Ji, Y. Zhang, J.
Wang, Tetrahedron 2016, 72, 8022-8030; c) M. Ueda,
K. Nishimura, I. Ryu, Synlett 2013, 24, 1683-1686.
a) J. Scharfbier, M. Oestreich, Synlett 2016, 27, 1274-
1276; b) J. Scharfbier, H. Hazrati, E. Irran, M. Oestreich,
Org. Lett. 2017, 19, 6562-6565.
N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-
2483.
A. Macchioni, Chem. Rev. 2005, 105, 2039-2074.
a) E. P. Gillis, M. D. Burke, J. Am. Chem. Soc. 2007,
129, 6716-6717; b) J. W. Lehmann, D. J. Blair, M. D.
Burke, Nature Reviews Chemistry 2018, 2, 0115.
[3]
[4]
R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011,
111, 1417-1492.
a) J. T. Binder, C. J. Cordier, G. C. Fu, J. Am. Chem.
Soc. 2012, 134, 17003-17006; b) J. H. Kirchhoff, M. R.
Netherton, I. D. Hills, G. C. Fu, J. Am. Chem. Soc. 2002,
124, 13662-13663; c) M. R. Netherton, G. C. Fu, Angew.
Chem. Int. Ed. 2002, 41, 3910-3912; d) K. M. Cobb, J.
M. Rabb-Lynch, M. E. Hoerrner, A. Manders, Q. Zhou,
M. P. Watson, Org. Lett. 2017, 19, 4355-4358; e) F.-S.
Han, Chem. Soc. Rev. 2013, 42, 5270-5298; f) N. Hazari,
P. R. Melvin, M. M. Beromi, Nature Reviews Chemistry
[11]
[12]
[13]
[14]
4
This article is protected by copyright. All rights reserved.