Enantioselective Phospha-Michael Reaction of Diphenyl Phosphonate with Nitroolefins
c) Y. Sohtome, N. Takemura, K. Takada, R. Takagi, T.
Iguchi, K. Nagasawa, Chem. Asian J. 2007, 2, 1150.
[10] Y. Sohtome, S. Tanaka, K. Takada, T. Yamaguchi, K.
Nagasawa, Angew. Chem. 2010, 122, 9449; Angew.
Chem. Int. Ed. 2010, 49, 9254.
[11] a) Y. Sohtome, B. Shin, N. Horitsugi, R. Takagi, K. No-
guchi, K. Nagasawa, Angew. Chem. 2010, 122, 7457;
Angew. Chem. Int. Ed. 2010, 49, 7299; b) Y. Sohtome,
B. Shin, N. Horitsugi, K. Noguchi, K. Nagasawa, Chem.
Asian. J. 2011, 6, 2463.
[12] For selected recent reviews on guanidine and guanidini-
um organocatalysts, see: a) M. Terada, J. Synth. Org.
Chem. Jpn. 2010, 68, 1159; b) D. Leow, C.-H. Tan, Syn-
lett 2010, 1589; c) T. Ishikawa, Superbases for Organic
Synthesis, Wiley, 2009; d) D. Leow, C.-H. Tan, Chem.
Asian J. 2009, 4, 488; e) T. Ishikawa, T. Kumamoto,
Synthesis 2006, 737.
[20] For selected reviews, see: a) L. D. Quin, A Guide to Or-
ganophosphorus Chemistry, Wiley, New York, NY,
2000; b) W. W. Metcalf, W. A. van der Donk, Annu.
Rev. Biochem. 2009, 78, 65.
[21] For a recent review, see: P. W. N. M. van Leeuwen,
Supramolecular Catalysis, Wiley-VCH, Weinheim, 2008
For examples of the importance of the assembly state
in polymetallic catalysis, see: a) N. Kato, T. Mita, M.
Kanai, B. Therrien, M. Kawano, K. Yamaguchi, H.
Danjo, Y. Sei, A. Sato, S. Furusho, M. Shibasaki, J. Am.
Chem. Soc. 2006, 128, 6768; b) I. Fujimori, T. Mita, K.
Maki, M. Shiro, A. Sato, S. Furusho, M. Kanai, M. Shi-
basaki, J. Am. Chem. Soc. 2006, 128, 16438; in organo-
catalysis, see: c) D. Uraguchi, Y. Ueki, T. Ooi, Science
2009, 326, 120; d) D. Uraguchi, Y. Ueki, T. Ooi, Angew.
Chem. 2011, 123, 3765; Angew. Chem. Int. Ed. 2011, 50,
3681.
[22] Mechanistic studies on the role of double H-bonding
donors in tautomerization of phosphite-phosphonate,
see: D. Uraguchi, T. Ito, T. Ooi, J. Am. Chem. Soc.
2009, 131, 3836.
[13] For pioneering work utilizing chiral urea/thiourea cata-
lysts by Jacobsenꢄs group, see: M. S. Sigman, E. N. Ja-
cobsen, J. Am. Chem. Soc. 1998, 120, 4901; for other
work by Jacobsen and co-workers, see refs.[1,2,4]
[23] Our initial trial of the phospha-Michael reaction of di-
phenyl phosphonate (3) with b-nitrostyrene (4a) with
the previously developed protocol using 2a[11] gave the
(R)-5a in 37% ee, albeit in poor yield (less than 5%
from 1H NMR). Since the addition of 4 ꢆ MS as an
acid scavenger improved the reactivity and selectivity
(94% yield, 89% ee), acidic impulities generated by
partial hydrolysis of 3 may deactivate guanidine func-
tionality in 2a.[16b,16e] These results also suggest that po-
tassium carbonate should act as an acid scavenger in
the reaction using 2a·HCl. However, another reaction
mechanism that predominately deprotonate phospho-
nate 3 (pKa =9.0 in DMSO) cannot be excluded at this
stage. J.-N. Li, L. Liu, Y. Fu, Q.-X. Guo, Tetrahedron
2006, 62, 4453.
[14] For Takemotoꢄs original work, see: a) T. Okino, Y.
Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125,
12672; for other work by Takemoto and co-workers,
see refs.[1,2] as well as their review: b) Y. Takemoto,
Chem. Pharm. Bull. 2010, 58, 593.
[15] For a recent review of the phospha-Michael reaction,
see: D. Enders, A. Saint-Dizier, M.-I. Lannou, A.
Lenzen, Eur. J. Org. Chem. 2006, 29.
[16] For organocatalytic enantioselective phospha-Michael
reactions of phosphonates with nitroolefins, see: a) J.
Wang, L. D. Heikkinen, H. Li, L. Zu, W. Jiang, H. Xie,
W. Wang, Adv. Synth. Catal. 2007, 349, 1052; b) M.
Terada, T. Ikehara, H. Ube, J. Am. Chem. Soc. 2007,
129, 14112; c) Y. Zhu, J. P. Malerich, V. H. Rawal,
Angew. Chem. 2010, 122, 157; Angew. Chem. Int. Ed.
2010, 49, 153; d) A. Alcaine, E. Marquꢂs-Lꢅpez, P.
Merino, T. Tejero, R. P. Herrera, Org. Biomol. Chem.
2011, 9, 2777; e) S. Abbaraju, M. Bhanuschali, C.-G.
Zhao, Tetrahedron 2011, 67, 7479.
[24] Solvent-dependent enantioswitching occurred in the
catalytic Friedel–Crafts reaction of 2-naphthol with 4a
using 2a·HCl and potassium carbonate. Thus, confor-
mationally flexible catalyst 2a·HCl may provide an
[17] For metal-based enantioselective phospha-Michael re-
actions of phosphonates with nitroolefins, see: V. Rai,
I. N. N. Namboothiri, Tetrahedron: Asymmetry 2008,
19, 2335.
[18] For selected examples of other classes of organocatalyt-
ic Michael reactions of P-nucleophiles, see; a) G. Barto-
li, M. Bosco, A. Carlone, M. Locatelli, A. Mazzanti, L.
Sambri, P. Melchiorre, Chem. Commun. 2007, 722;
b) X. Fu, Z. Jiang, C.-H. Tan, Chem. Commun. 2007,
5058; c) A. Carlone, G. Bartoli, M. Bosco, L. Sambri, P.
Melchiorre, Angew. Chem. 2007, 119, 4588; Angew.
Chem. Int. Ed. 2007, 46, 4504; d) I. Ibrahem, R. Rios, J.
Vesely, P. Hammar, L. Eriksson, F. Himo, A. Cꢅrdova,
Angew. Chem. 2007, 119, 4591; Angew. Chem. Int. Ed.
2007, 46, 4507; e) E, Maerten, S. Cabrera, A. Kjærs-
gaard, K. A. Jørgensen, J. Org. Chem. 2007, 72, 8893.
[19] For reviews on organocatalytic asymmetric 1,4-conju-
gate additions: a) S. B. Tsogoeva, Eur. J. Org. Chem.
2007, 1701; b) D. Almasi, D. A. Alonso, C. Nꢃjera, Tet-
rahedron: Asymmetry 2007, 18, 299; c) J. L. Vicario, D.
Badia, L. Carrillo, Synthesis 2007, 2065.
enantiomerically different transition state depending
on the nucleophilic anion used.
[25] For selected general reviews concerning asymmetric bi-
functional catalysts, see: a) M, Shibasaki, M. Kanai, S.
Matsunaga, N. Kumagai, Acc. Chem. Res. 2009, 42,
1117; b) M. Shibasaki, S. Matsunaga, N. Kumagai, Syn-
lett 2008, 1583; c) M. Shibasaki, M. Kanai, Org.
Biomol. Chem. 2007, 5, 2027; d) M. Shibasaki, M.
Kanai, S. Matsunaga, Aldrichimica Acta 2006, 39, 31;
e) M. Shibasaki, S. Matsunaga, Chem. Soc. Rev. 2006,
35, 269; f) M. Kanai, N. Kato, E. Ichikawa, M. Shibasa-
ki, Synlett 2005, 1491; g) M. Shibasaki, N. Yoshikawa,
Adv. Synth. Catal. 2011, 353, 2631 – 2636
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2635