2616 J. Phys. Chem. A, Vol. 114, No. 7, 2010
Silva et al.
the calculated values of the ꢀ components, it is possible to
estimate the ratio F of the scalar invariants associated with the
septor and the vector parts10
We plan to apply this methodology (oriented gas model, large
cluster, W-B local field correction, PM6 Hamiltonian) to more
compounds with d components determined in accurate experiments.
Acknowledgment. This work was supported by Fundac¸a˜o
para a Cieˆncia e a Tecnologia (FCT), under the Scholarship
SFRH/BD/38387/2008 and under the Project PTDC/FIS/103587/
2008.
|ꢀJ)3
|ꢀJ)1
|
|
F )
(16)
In the case of molecules with no particular symmetry, the most
general formulas, corresponding to class 1, must be used to
calculate the invariants.62
References and Notes
(1) Nonlinear Optical Properties of Organic Molecules and Crystals;
Chemla, D. S., Zyss, J., Eds.; Academic Press: Orlando, FL, 1987; Vol. 1.
(2) Molecular Nonlinear Optics. Materials, Physics, and DeVices; Zyss,
J., Ed.; Academic Press: Boston, MA, 1994.
(3) Marder, S. R.; Perry, J. W.; Schaefer, W. P. Science 1989, 245,
626.
(4) Lacroix, P. J.; Cle´ment, R.; Nakatani, K.; Zyss, J.; Ledoux, I.
Science 1994, 263, 658.
(5) Pan, F.; Kno¨pfle, G.; Bosshard, C.; Follonier, S.; Spreiter, R.; Wong,
M. S.; Gu¨nter, P. Appl. Phys. Lett. 1996, 69, 13.
We calculated the F values for TPG, TPG+, the chromophoric
units of the salts (ion pairs), and also the unit cells when the
crystalline symmetry allowed the existence of both components.
All tensor components were taken from the PM6 calculations,
and for the unit cell, we used the d components of the calculation
with the largest cluster and W-B local field correction.
The vector part of the ꢀ tensor can be related to the dipole
moment,63 and the octupolar part will be higher for a system
with trigonal symmetry; therefore, it is interesting to relate the
F values of the TPG molecule and the TPG+ ions in the three
salts with the dipole moment and the geometry of the central
CN3 fragments. We applied the geometry-based HOMA (har-
monic oscillator measure of aromaticity) index of aromaticity64,65
(HOMA is defined to give 0 for a model nonaromatic system
and 1 for a system where full π-electron delocalization occurs)
to quantify the so-called Y aromaticity66 of the guanidine and
guanidinium fragments (see Table 16). The cations are more
octupolar than TPG since the guanidinium core is more
symmetric, which is reflected in the higher values of the HOMA
index of the cations.
(6) Zyss, J.; Nicoud, J. F.; Coquillay, M. J. Chem. Phys. 1984, 81,
4160.
(7) Josse, D.; Dou, S. X.; Zyss, J.; Andreazza, P.; Pe´rigaud, A. Appl.
Phys. Lett. 1992, 61, 121.
(8) Oudar, J. L.; Zyss, J. Phys. ReV. A 1982, 26, 2016.
(9) Zyss, J. Nonlinear Opt. 1991, 1, 3.
(10) Zyss, J. J. Chem. Phys. 1993, 98, 6583.
(11) Zyss, J.; Brasselet, S.; Thalladi, V. R.; Desiraju, G. R. J. Chem.
Phys. 1998, 109, 658.
(12) Zyss, J.; Ledoux-Rak, I.; Weiss, H.-C.; Bla¨ser, D.; Boese, R.;
Thallapally, P. K.; Thalladi, V. R.; Desiraju, G. R. Chem. Mater. 2003, 15,
3063.
(13) Le Floc’h, V.; Brasselet, S.; Zyss, J.; Cho, B. R.; Lee, S. H.; Jeon,
S.-J.; Cho, M.; Min, K. S.; Suh, M. P. AdV. Mater. 2005, 17, 196.
(14) Zyss, J.; Pe´caut, J.; Levy, J. P.; Masse, R. Acta Crystallogr., Sect.
B 1993, 49, 334.
(15) Kemme, A.; Rutkis, M.; Eiduss, J. LatV. PSR Zinat. Akad. Vestis
Kim. Ser. 1988, 5, 595.
For crystals belonging to point group 222 (ex. space group
P212121), the d tensor reduces to a purely octupolar component,
and its vector part is identically 0; therefore, only the octupolar
part of the molecular ꢀ tensor will contribute to the crystalline
d tensor. Since in TPG+ formate (F ) 0.774) and TPG+
m-methoxybenzoate (F ) 0.846), the octupolar part is ap-
preciable but not dominant at the molecular level (with the ion
pair as the chromophoric unit), most of this nonlinear response
will not contribute to the macroscopic response. In TPG+
benzoate (class m), F ) 0.771 at the molecular level and 1.151
for the unit cell. The TPG crystal may have both dipolar and
octupolar contributions to the macroscopic second-order polar-
izability since it is a medium with mm2 point symmetry. The
TPG molecule has a slight predominance of the octupolar
component of ꢀ (F ) 1.137), and this component is also
dominant in tensor d (F ) 1.662).
(16) Pereira Silva, P. S.; Paixa˜o, J. A.; Ramos Silva, M.; Matos Beja,
A. Acta Crystallogr., Sect. E 2006, 62, o3073.
(17) Pereira Silva, P. S.; Cardoso, C.; Ramos Silva, M.; Paixa˜o, J. A.
Acta Crystallogr., Sect. E 2007, 63, o501.
(18) Pereira Silva, P. S.; Ramos Silva, M.; Paixa˜o, J. A.; Matos Beja,
A. Acta Crystallogr., Sect. E 2007, 63, o2243.
(19) Pereira Silva, P. S.; Ramos Silva, M.; Paixa˜o, J. A.; Matos Beja,
A. Acta Crystallogr., Sect. E 2007, 63, o2524.
(20) Dastychova, L.; Prihoda, J.; J., T. Collect. Czech. Chem. Commun.
2007, 72, 297.
(21) Pereira Silva, P. S.; Domingos, S. R.; Ramos Silva, M.; Paixa˜o,
J. A.; Matos Beja, A. Acta Crystallogr., Sect. E 2008, 64, o1082.
(22) Cardoso, C.; Pereira Silva, P. S.; Ramos Silva, M.; Matos Beja,
A.; Paixa˜o, J. A.; Nogueira, F.; Sobral, A. J. F. N. J. Mol. Struct. 2008,
878, 169.
(23) Chemla, D. S.; Oudar, J. L.; Jerphagnon, J. Phys. ReV. B 1975, 12,
4534.
(24) Zyss, J.; Oudar, J. L. Phys. ReV. A 1982, 26, 2028.
(25) Wortmann, R.; Bishop, D. M. J. Chem. Phys. 1998, 108, 1001.
(26) Spek, A. L. HELENA. CAD-4 Data Reduction Program; University
of Utrecht: Utrecht, The Netherlands, 1997.
4. Conclusions
(27) SMART and SAINT; Bruker AXS Inc.: Madison, WI, 2003.
(28) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112.
(29) Kurtz, S. K.; Perry, T. T. J. Appl. Phys. 1968, 39, 3798.
(30) Garcia, M. H.; Rodrigues, J. C.; Dias, A. R.; Piedade, M. F. M.;
Duarte, M. T.; Robalo, M. P.; Lopes, N. J. Organomet. Chem. 2001, 632,
133.
(31) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209.
(32) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 221.
(33) Stewart, J. J. P. J. Comput. Chem. 1991, 12, 320.
(34) Stewart, J. J. P. J. Mol. Model. 2004, 10, 155.
(35) Stewart, J. J. P. J. Mol. Model. 2007, 13, 1173.
(36) Stewart, J. J. P. MOPAC2009, Version 9.045W ed.; Stewart
Computational Chemistry: Colorado Springs, CO, 2009.
(37) Hamada, T. J. Phys. Chem. 1996, 100, 8777.
(38) Bo¨ttcher, C. J. Theory of Electric Polarization; Elsevier: Amster-
dam, The Netherlands, 1973; Vol. 1.
In this paper, we have performed the calculation of the
second-order susceptibility for crystals made of microscopic
units with no special symmetry. The calculations were based
on the oriented gas model in its most general formulation. We
considered several types of microscopic units from the molecule
to clusters of different sizes/shapes. We also used different local
field corrections. For the calculation of the microscopic ꢀ tensor
components, we used the semiempirical PM3 and PM6
Hamiltonians.
Comparison with the experimental data showed that consid-
eration of a large cluster as the microscopic unit yields better
theoretical results. Also, the use of the W-B local field factors
instead of the usual L-L correction further improved the
calculated d components. The PM6 Hamiltonian performed
better in comparison with the older PM3.
(39) van Duijnen, P. T.; de Vries, A. H.; Swart, M.; Grozema, F.
J. Chem. Phys. 2002, 117, 8442.
(40) Onsager, L. J. Am. Chem. Soc. 1936, 58, 1486.
(41) Zyss, J.; Tsoucaris, G. T. In Structure and Properties of Molecular
Crystals; Pierrot, M., Ed.; Elsevier: Amsterdam, The Netherlands, 1990.