Journal of the American Chemical Society
Article
Palladium Complex-Catalyzed C-H Oxidative Borylation. J. Am. Chem.
Soc. 2015, 137, 4054−4057.
Institutes of Health (R01GM102604), American Chemical
Society Petroleum Research Fund (59177-ND1), Teva
Pharmaceuticals Marc A. Goshko Memorial Grant (60011-
TEV), and Sloan Research Fellowship.
(7) (a) Sharpless, K. B.; Hori, T. Allylic Amination of Olefins and
Acetylenes by Imido Sulfur Compounds. J. Org. Chem. 1976, 41, 176−
177. (b) Sharpless, K. B.; Hori, T.; Truesdale, L. K.; Dietrich, C. O.
Allylic Amination of Olefins and Acetylenes by Imido Selenium
Compounds. J. Am. Chem. Soc. 1976, 98, 269−271. (c) Kresze, G.;
Muensterer, H. Bis(methoxycarbonyl)sulfur Diimide, AConvenient
Reagent for the Allylic Amination of Alkenes. J. Org. Chem. 1983, 48,
3561−3564. (d) Katz, T. J.; Shi, S. A Simple Allylic Amination
Procedure and the Metathesis of N-Sulfinylcarbamates. J. Org. Chem.
1994, 59, 8297−8298.
REFERENCES
■
(1) (a) Labinger, J. A.; Bercaw, J. E. Understanding and exploiting C-
H bond activation. Nature 2002, 417, 507−514. (b) Bergman, R. G.
Organometallic chemistry: C-H activation. Nature 2007, 446, 391−
̈
393. (c) Grennberg, H.; Backvall, J.-E., Allylic Oxidations. In Transition
Metals for Organic Synthesis; Wiley-VCH Verlag GmbH, 2008; pp 243−
265. (d) Liu, G.; Wu, Y. Palladium-Catalyzed Allylic C-H Bond
Functionalization of Olefins. In C-H Activation; Yu, J.-Q., Shi, Z., Eds.;
Springer: Berlin, Heidelberg, 2010; pp 195−209. (e) Andrus, M. B.
Allylic and Benzylic Oxidation. In Stereoselective Synthesis 3; 1st ed.;
Evans, P. A., Ed.; Georg Thieme Verlag: Stuttgart, 2011; Vol. 3.
(f) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Weak Coordination as a
Powerful Means for Developing Broadly Useful C-H Functionalization
Reactions. Acc. Chem. Res. 2012, 45, 788−802. (g) Newhouse, T.;
Baran, P. S. If C-H Bonds Could Talk: Selective C-H Bond Oxidation.
Angew. Chem., Int. Ed. 2011, 50, 3362−3374. (h) White, M. C. Adding
Aliphatic C-H Bond Oxidations to Synthesis. Science 2012, 335, 807−
809. (i) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J.
Mild metal-catalyzed C-H activation: examples and concepts. Chem.
Soc. Rev. 2016, 45, 2900−2936. (j) He, J.; Wasa, M.; Chan, K. S. L.;
Shao, Q.; Yu, J.-Q. Palladium-Catalyzed Transformations of Alkyl C-H
Bonds. Chem. Rev. 2017, 117, 8754−8786. (k) Chu, J. C. K.; Rovis, T.
Complementary Strategies for Directed C(sp3)-H Functionalization: A
Comparison of Transition-Metal-Catalyzed Activation, Hydrogen
Atom Transfer, and Carbene/Nitrene Transfer. Angew. Chem., Int.
Ed. 2018, 57, 62−101.
discussion of optimization studies.
(9) Neumeier, M.; Gschwind, R. M. Elongated Gilman Cuprates: The
Key to Different Reactivities of Cyano- and Iodocuprates. J. Am. Chem.
Soc. 2014, 136, 5765−5772.
(10) (a) Surry, D. S.; Buchwald, S. L. BiarylPhosphane Ligands in
Palladium-CatalyzedAmination. Angew. Chem., Int. Ed. 2008, 47,
6338−6361. (b) Martin, R.; Buchwald, S. L. Palladium-Catalyzed
Suzuki-Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl-
Phosphine Ligands. Acc. Chem. Res. 2008, 41, 1461−1473.
̈
(11) (a) Schlenk, W.; Wilh, S. Uber die Konstitution der
Grignardschen Magnesiumverbindungen. Ber. Dtsch. Chem. Ges. B
1929, 62, 920−924. (b) Neufeld, R.; Teuteberg, T. L.; Herbst-Irmer,
R.; Mata, R. A.; Stalke, D. Solution Structuresof Hauser Base
iPr2NMgCl and Turbo-Hauser Base iPr2NMgCl·LiCl in THF
andtheInfluenceofLiCl on theSchlenk-Equilibrium. J. Am. Chem. Soc.
2016, 138, 4796−4806.
(12) Yoshikai, N.; Zhang, S.-L.; Nakamura, E. Origin of the Regio- and
Stereoselectivity of Allylic Substitution of Organocopper Reagents. J.
Am. Chem. Soc. 2008, 130, 12862−12863.
(13) Yoshikai, N.; Nakamura, E. Mechanisms of Nucleophilic
Organocopper(I) Reactions. Chem. Rev. 2012, 112 (4), 2339−2372.
(14) (a) Harpp, D. N.; Vines, S. M.; Montillier, J. P.; Chan, T. H.
Organic sulfur chemistry. Part XXII. The reaction of sulfinate esters
with Grignard and organocopper lithium reagents. A useful route to
chiral sulfoxides. J. Org. Chem. 1976, 41, 3987−3992. (b) Gendreau, Y.;
Normant, J. F.; Villieras, J. Reaction of Organomagnesium with Allylic
Sulfides and Sulfonium Salts Catalyzed by Copper-Salts. J. Organomet.
Chem. 1977, 142, 1−7. (c) Julia, M.; Righini, A.; Verpeaux, J.-N.
Couplage des sulfones allyliques avec des reactifs de grignarden
presence de cuivresynthesed’olefines. Tetrahedron Lett. 1979, 20,
2393−2396. (d) Masaki, Y.; Sakuma, K.; Kaji, K. Regio-Selective and
Stereo-Selective Gamma-Substitution of Allylic Sulfoxides and Sulfones
with Lithium Dialkylcuprates - A New Synthesis of Trisubstituted
Olefins. J. Chem. Soc., Chem. Commun. 1980, 434−435. (e) Deleris, G.;
Dunogues, J.; Gadras, A. Alkylation de terpenes en deux etapes par ene-
reaction. Tetrahedron Lett. 1984, 25, 2135−2138.
(15) For reviews, see: (a) Trost, B. M.; Van Vranken, D. L.
Asymmetric Transition Metal-Catalyzed Allylic Alkylations. Chem. Rev.
1996, 96, 395−422. (b) Moberg, C.; Bremberg, U.; Hallman, K.;
Svensson, M.; Norrby, P.-O.; Hallberg, A.; Larhed, M.; Csoregh, I.
Selectivity and reactivity in asymmetric allylic alkylation. Pure Appl.
Chem. 1999, 71, 1477−1483. (c) Trost, B. M.; Lee, C. In Asymmetric
Allylic Alkylation Reactions; Wiley-VCH, 2000; pp 593−649.
(d) Kazmaier, U. Palladium catalyzed allylic alkylations of nonstabilized
enolates. Curr. Org. Chem. 2003, 7, 317−328. (e) Trost, B. M.; Crawley,
M. L. Asymmetric Transition-Metal-Catalyzed Allylic Alkylations:
Applications in Total Synthesis. Chem. Rev. 2003, 103, 2921−2943.
(f) Helmchen, G.; Ernst, M.; Paradies, G. Application of allylic
substitutions in natural products synthesis. Pure Appl. Chem. 2004, 76,
495−506. (g) Miyabe, H.; Takemoto, Y. Regio- and stereocontrolled
palladium- or iridium-catalyzed allylation. Synlett 2005, 1641−1655.
(h) Nishibayashi, Y.; Uemura, S. In C-C Bond Formation (part 2) by
Substitution Reactions: Allylic Alkylation; Elsevier Ltd., 2007; pp 75−
122. (i) Falciola, C. A.; Alexakis, A. Copper-catalyzed asymmetric allylic
alkylation. Eur. J. Org. Chem. 2008, 2008 (22), 3765−3780.
(j) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.;
(2) (a) Jensen, T.; Fristrup, P. Toward Efficient Palladium-Catalyzed
Allylic C-H Alkylation. Chem. - Eur. J. 2009, 15, 9632−9636. (b) Dong,
Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Transition-Metal-
Catalyzed C-H Alkylation Using Alkenes. Chem. Rev. 2017, 117, 9333−
9403.
(3) (a) He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.;
Homs, A.; Yu, J.-Q. Ligand-Controlled C(sp3)-H Arylation and
Olefination in Synthesis of Unnatural Chiral α-Amino Acids. Science
2014, 343, 1216−1220. (b) Chen, G.; Shigenari, T.; Jain, P.; Zhang, Z.;
Jin, Z.; He, J.; Li, S.; Mapelli, C.; Miller, M. M.; Poss, M. A.; Scola, P. M.;
Yeung, K.-S.; Yu, J.-Q. Ligand-Enabled β-C-H Arylation of α-Amino
Acids Using a Simple and Practical Auxiliary. J. Am. Chem. Soc. 2015,
137, 3338−3351.
(4) (a) Bao, H.; Tambar, U. K. Catalytic Enantioselective Allylic
Amination of Unactivated Terminal Olefins via an Ene Reaction/[2,3]-
Rearrangement. J. Am. Chem. Soc. 2012, 134, 18495−18498. (b) Bao,
H.; Bayeh, L.; Tambar, U. K. Allylic Functionalization of Unactivated
Olefins with Grignard Reagents. Angew. Chem., Int. Ed. 2014, 53, 1664−
1668. (c) Bayeh, L.; Le, P. Q.; Tambar, U. K. Catalytic allylic oxidation
of internal alkenes to a multifunctional chiral building block. Nature
2017, 547, 196−200.
(5) (a) Fuji, K. Asymmetric Creation of Quaternary Carbon Centers.
Chem. Rev. 1993, 93, 2037−2066. (b) Christoffers, J.; Mann, A.
Enantioselective Construction of Quaternary Stereocenters. Angew.
Chem., Int. Ed. 2001, 40, 4591−4597. (c) Quasdorf, K. W.; Overman, L.
E. Catalytic Enantioselective Synthesis ofQuaternary Carbon Stereo-
centers. Nature 2014, 516, 181. (d) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-
H.; Zhou, F.; Zhou, J. Catalytic Enantioselective Desymmetrization
Reactions to All-Carbon Quaternary Stereocenters. Chem. Rev. 2016,
116, 7330−7396.
(6) (a) Fujita, K.; Yorimitsu, H.; Shinokubo, H.; Oshima, K.
Transformation of Zirconocene-Olefin Complexes into Zirconocene
Allyl Hydride and Their Use as Dual NucleophilicReagents: Reactions
with Acid Chloride and 1,4-Diketone. J. Am. Chem. Soc. 2004, 126,
6776−6783. (b) Tao, Z.-L.; Li, X.-H.; Han, Z.-Y.; Gong, L.-Z.
Diastereoselective Carbonyl Allylation with Simple Olefins Enabled by
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX