10.1002/adsc.202001043
Advanced Synthesis & Catalysis
References
Finally, we demonstrated the utility of the
developed methodology and the potential for the
further functionalization of chiral cyclic amines in the
synthesis of biologically active molecular skeletons
(Scheme 3). Zinc-catalyzed asymmetric hydrosily-
lation of the corresponding cyclic imines under
elaborated conditions provided 2-aryl pyrrolidines
(2q–2r) with high yields and enantioselectivity up to
94% ee (for 2q). Asymmetric hydrosilylation of
difluoro- substituted Larotrectinib precursor was
however less selective (68% ee). Improvement of the
purity of product 2r to 80% ee was achieved by
additional recrystallization with D-malic acid.4a Thus,
the afforded cyclic amines 2q–2r may represent
valuable pharmaceutical key intermediates for drugs
such as: Aticaprant and Larotrectinib.
[1] For selected examples, see: a) C. S. Lood, A. M. P.
Koskinen, Chem Heterocycl Comp. 2015, 50, 1367–
1387; b) A. R. Pinder, Nat. Prod. Rep. 1992, 9, 17–23.
[2] For selected examples, see: a) L. Wang, K. A. Mason, K.
Ang, T. Buchholz, D. Valdecanas, A. Mathur, C. Buser-
Doepner, C. Toniatti, L. Milas, Invest. New Drugs 2012,
30, 2113–2120; b) M. C. Bryan, K. Biswas, T. A. N.
Peterkin, R. M. Rzasa, L. Arik, S. G. Lehto, H. Sun, F.-
Y. Hsieh, C. Xu, R. T. Fremeau, J. R. Allen, Bioorg. Med.
Chem. Lett. 2012, 22, 619–622.
[3] a) D. S. Hong, T. M. Bauer, J. J. Lee, A. Dowlati, M. S.
Brose, A. F. Farago, A. T. Shaw, S. Montez, F. Meric-
Bernstam, S. Smith, B. B. Tuch, K. Ebata, S. Cruick-
Shank, M. C. Cox, H. A. Burris, R. C. Doebele, Annals
of Oncology 2019, 30, 325–331; b) E. Domi, E. Barbier,
G. Augier, D. Gehlert, R. Barchiesi, A. Thorsell, L.
Holm, M. Heilig, Neuropsychopharmacol. 2018, 43,
1805–1812; c) T. W. Laetsch, S. G. DuBois, L.
Mascarenhas, B. Turpin, N. Federman, C. M. Albert, R.
Nagasubramanian, J. L. Davis, E. Rudzinski, A. M.
Feraco, B. B. Tuch, K. T. Ebata, M. Reynolds, S. Smith,
S. Cruickshank, M. C. Cox, M. A. S. Pappo, D. S.
Hawkins, Lancet Oncol. 2018, 19, 705–714
In conclusion, we have developed a new strategy
for enantioselective hydrosilylation of cyclic imines
promoted by the chiral zinc catalyst. This is also the
first successful application of zinc-based catalyst in a
stereoselective reduction of cyclic imines, which
provides new insight into further extent of the synthetic
scope. The elaborated system is based on cost-effective
and easily accessible zinc-complex prepared from
commercially available ProPhenol ligand enantiomers.
Furthermore, the presented method provides a facile
access to a diverse range of enantioenriched 2-aryl-
substituted pyrrolidines with very good yields and
excellent enantioselectivities. The chiral products
accessible using this methodology are versatile
scaffolds for further functionalization, and can be
rapidly transformed into biologically active
compounds or pharmaceutical drugs.
[4] a) T. Lundrigan, E. N. Welsh, T. Hynes, C. H. Tien, M.
R. Adams, K. R. Toy, K. N. Robertson, A. W. H. Speed,
J. Am. Chem. Soc. 2019, 141, 14083–14088; b) T. Yang,
X. Guo, X. Zhang, X. Chem. Sci. 2019, 10, 2473–2477;
c) Y. Zhang, Q. Yan, G. Zi, G. Hou, Org. Lett. 2017, 19,
4215–4218.
[5] For selected examples of enantioselective biocatalysis,
see: a) Y. H. Zhang, F. F. Chen, B. B. Li, X. Y. Zhou, Q.
Chen. J. H. Xu, G. W. Zheng, Org. Lett. 2020, 22, 3367–
3372; b) M. D. Patil, G. Grogan, A. Bommarius, H. Yun,
H. ACS Catal. 2018, 8, 10985–11015; c) G. A. Aleku, H.
Man, S. P. France, F. Leipold, S. Hussain, L. Toca-
Gonzalez, R. Marchington, S. Hart, J. P. Turkenburg, G.
Grogan, N. J. Turner, N. J. ACS Catal. 2016, 6, 3880–
3889; d) S. Hussain, F. Leipold, H. Man, E. Wells, S. P.
France, K. R. Mulholland, G. Grogan, N. J. Turner,
ChemCatChem 2015, 7, 579–583; e) D. Ghislieri, N. J.
Turner, Top. Catal. 2014, 57, 284–300; f) F. Leipold, S.
Hussain, D. Ghislieri, N. J. Turner, ChemCatChem 2013,
5, 3505–3508; g) D. Ghislieri, A. P. Green, M. Pontini,
S. C. Willies, I. Rowles, G. Grogan, N. J. Turner, J. Am.
Chem. Soc. 2013, 135, 10863–10869.
Experimental Section
General procedure for Zinc-Catalyzed Asymmetric
Hydrosilylation of Cyclic Imines
Under an argon atmosphere at room temperature ZnEt2
solution (15 wt. % in toluene, 0.1 mL, 0.1 mmol) and (S,S)-
ProPhenol L1 (32 mg, 0.05 mmol) were dissolved in
anhydrous THF (1 mL) and stirred for 60 min. (EtO)2MeSiH
(0.32 mL, 2.0 mmol, 4.0 equiv.) was then added and the
mixture was cooled down to 4 °C, and stirred for additional
5 min. The corresponding cyclic imine (0.5 mmol, 1.0
equiv.) was dissolved in anhydrous THF (0.2 mL) and
subsequently added to the reaction. The resulting mixture
was stirred at 4 °C for 48 h. After this time, the reaction
mixture was directly poured onto a silica gel column and
eluted with a mixture of ethyl acetate-methanol (10:1 + 1%
Et3N, v/v). The ee values were determined by HPLC method.
[6] For
selected
examples
of
enantioselective
organocatalysis, see: a) T. Theissmann, A. P. Antonchick,
M. A. Rueping, Angew. Chem. Int. Ed. 2006, 45, 3683–
3686; b) J. C. A. Hunt, P. Laurent, C. J. Moody, Chem.
Commun. 2000, 1771–1772.
[7] For selected examples of enantioselective transition-
metal catalyzed hydrogenation, see: a) Y. Zhang, D.
Kong, R. Wang, G. Hou, Org. Biomol. Chem. 2017, 15,
3006–3012; b) B. Vilhanová, J. Václavík, P. Šot, J.
Pecháček, J. Zápal, R. Pažout, J. Maixner, M. Kuzma, P.
Kačer, P. Chem. Commun. 2016, 52, 362–365; c) M.
Chang, W. Li, G. Hou, X. Zhang, Adv. Synth. Catal.
Acknowledgements
Financial support from the Polish National Science Centre (OPUS
Grant No. NCN 2017/27/B/ST5/01111) is gratefully acknowledged.
4
This article is protected by copyright. All rights reserved.