OXIDATION OF L-SORBOSE
729
mode in which three N atoms could interact with the Pt sur-
face (modeled on an ideal Pt (111) structure) is sterically
hinderedbythesurroundingthreemethylenegroups. When
using this amine as modifier, the accessibility of one of the
N atoms to an interaction with one of the OH functional
groups of L-sorbose is the highest. Several possible com-
plexes between L-sorbose and modifier 13 were optimized.
A common feature of these complexes is that after adsorp-
tion on a flat Pt surface, the pyranose ring of sorbose is in
a tilted, “partially adsorbed” position. Note that the ꢁ-L-
sorbopyranose structure was considered in the calculations
as L-sorbose is present mainly in this form (95%) in aqueous
solutions and at ambient temperature (43). Figure 10 shows
one example of a H-bond stabilized (by 29 kJ molꢂ1) assem-
bly of L-sorbose and hexamethylenetetramine 13. (It is very
5. Fried, J., and Edwards, J. A., “Organic Reactions in Steroid Chem-
istry,” Vol. 1, p. 329. Van Nostrand Reinhold, New York, 1972.
6. Haines, A. H., “Methods for the Oxidation of Organic Compounds,”
p. 158. Academic Press, London, 1988.
7. Ro¨per, H., in “Carbohydrates as Organic Raw Materials” (F. W.
Lichtenthaler, Ed.), p. 267. VCH, Weinheim, 1990.
8. van Bekkum, H., in “Carbohydrates as Organic Raw Materials” (F. W.
Lichtenthaler, Ed.), p. 289. VCH, Weinheim, 1990.
9. Mallat, T., Baiker, A., Catal. Today 19, 247 (1994).
10. Besson, M., Lahmer, F., Gallezot, P., Fuertes, P., andFle`che, G., J. Catal.
152, 116 (1995).
11. Despeyroux, B. M., Deller, K., and Peldszus, E., Stud. Surf. Sci. Catal.
55, 159 (1990).
12. Smits, P. C. C., Kuster, B. F. M., van der Wiele, K., and van der Baan,
H. S., Appl. Catal. 33, 83 (1987).
13. Abbadi, A., and van Bekkum, H., Appl. Catal. A 124, 409 (1995).
14. Dirkx, J. M. H., and van der Baan, H. S., J. Catal. 67, 1 (1981).
15. Dirkx, J. M. H., and van der Baan, H. S., J. Catal. 67, 14 (1981).
likely that the other two unadsorbed N atoms also interact 16. Schuurman, Y., Kuster, B. F. M., van der Wiele, K., and Marin, G. B.,
Stud. Surf. Sci. Catal. 72, 43 (1992).
17. Hronec, M., Cvengrosova, Z., Stolcova, M., and Klavski, J., React.
Kinet. Catal. Lett. 20, 207 (1982).
18. Kim, V. I. E., Zakharova, V., and Kozhevnikov, I. V., React. Kinet.
with sorbose or water molecules by H-bonding, which is not
shown here.) The steric arrangement of the presented 13–
sorbose complex can explain the outstanding preference to
C-1 oxidation: only the C-1–O–H fragment of the tilted sor-
Catal. Lett. 45, 271 (1991).
bose molecule is close to the Pt surface, liable to oxidative 19. Bro¨nnimann, C., Bodnar, Z., Hug, P., Mallat, T., and Baiker, A., J.
Catal. 150, 199 (1994).
20. Parsons, R., and VanderNoot, T., J. Electroanal. Chem. 257, 9 (1988).
21. Bro¨nnimann, C., Mallat, T., and Baiker, A., J. Chem. Soc. Chem. Com-
dehydrogenation.
CONCLUSIONS
mun. 1377 (1995).
22. Lipkin, D., and Stewart, T. D., J. Am. Chem. Soc. 61, 3295 (1939).
23. Nakamura, Y., Bull. Chem. Soc. Jpn. 16, 367 (1941).
It has been demonstrated that the modification of sup-
ported Pt by traces of tertiary amines and quaternary 24. Mallat, T., Bodnar, Z., Baiker, A., Greis, O., Stru¨big, H., and Reller,
A., J. Catal. 142, 237 (1993).
25. Mallat, T., Bodnar, Z., and Baiker, A., Stud. Surf. Sci. Catal. 78, 377
ammonium hydroxides can significantly enhance the rate
and/or selectivity of sorbose oxidation. The efficiency of
this new method is far better than that of tuning the bulk
pH of the solution or modifying Pt by heavy metal adatoms.
(1993).
26. Sokolskii, D. V., “Hydrogenation in Solution.” Izd. Nauka Kaz. SSR
Alma Ata, 1979. [in Russian]
It is likely that the method can be applied in other Pt- or 27. Mallat, T., and Baiker, A., Catal. Today 24, 143 (1995).
28. Mallat, T., Allmendinger, T., and Baiker, Appl. Surf. Sci. 52, 189 (1991).
29. Goncalves, R. S., Leger, J. M., and Lamy, C., Electrochim. Acta 33,
Pd-catalyzed oxidations of sensitive compounds, such as
polyols.
A model for the Pt–amine–sorbose interaction which
1581 (1988).
30. Breiter, M. W., in “Modern Aspects of Electrochemistry” (J. M.
provides a possible explanation for the rate acceleration
and selectivity enhancement observed has been proposed.
The future refinement of this model requires further evi-
dence concerning the catalytic influence of amines on each
of the consecutive reaction steps of the alcohol → acid
transformation and the effect of oxidation products on the
Pt–amine–sorbose interaction.
Bockris and B. E. Conway, Eds.), Vol. 10, p. 161. Plenum, New York,
1975.
31. Vinke, P., de Wit, D., de Goede, A. T. J. W., and van Bekkum, H., Stud.
Surf. Sci. Catal. 72, 1 (1992).
32. Dirkx, J. M. H., van der Baan, H. S., and van den Broek, J. M. A. J. J.,
Carhohydr. Res. 59, 63 (1977).
33. Perrin, D. D., “Dissociation Constants of Organic Bases in Aqueous
Solution.” Butterworths, London, 1965.
34. Weast, R. C. (Ed.), “CRC Handbook of Chemistry and Physics,” 67th
ed., p. D-159. CRC Press, Boca Raton, FL, 1986.
35. Mayer, B., Spencer, T. A., and Onan, K. D., J. Am. Chem. Soc. 106,
6343 (1984).
36. Chebotarev, A. N., and Kachan, S. V., Russ. J. Phys. Chem. 65, 360
(1991). [English transition]
ACKNOWLEDGMENTS
Financial support of this work by Hoffmann-La Roche AG, Switzer-
land, and the “Kommission zur Fo¨rderung der wissenschaftlichen
Forschung” is gratefully acknowledged.
37. Kolling, M., Inorg. Chem. 9, 408 (1970).
38. Mallat, T., Bodnar, Z., Hug, P., and Baiker, A., J. Catal. 153, 131 (1995).
39. Heyns, K., and Blazejewicz, L., Tetrahedron 9, 67 (1960).
40. Nicoletti, J. W., and Whitesides, G. M., J. Phys. Chem. 93, 759 (1989).
41. Vinke, P., van Dam, H. E., and van Bekkum, H., Stud. Surf. Sci. Catal.
55, 147 (1990).
REFERENCES
1. Reichstein, T., and Gruessner, A., Helv. Chim. Acta 17, 311 (1934).
2. Crawford, T. C., and Crawford, S. A., Adv. Carbohydr. Chem. Bio-
chem. 37, 79 (1980).
42. Tillaart, J. A. A., Kuster, B. F. M., and Marin, G. B., Appl. Catal. A.
120, 127 (1994).
3. Heyns, K., Ann. 558, 177 (1947).
4. Heyns, K., and Paulsen, H., Adv. Carbohydr. Chem. 17, 169 (1962).
43. Que, L., and Gray, G. R., Biochemistry 13, 146 (1974).