Microwave-Mediated Pyrazole Fluorinations Using Selectfluor 345
the diketones (acetonitrile, 70◦C, 24 h). The monoflu-
orinated diketones of 1a, 1c, and 1d were isolated
and identified by 19F NMR to verify the reaction
pathway. The in situ generated diketones then un-
derwent H-TEDA catalyzed condensation with the
arylhydrazines (acetonitrile, 70◦C, 24–40 h) to pro-
vide the 4-fluoropyrazoles are shown in Scheme 2.
The method B led to formation of the 3-CH3,
4-F- and 3-CF3, 4-F-pyrazole isomers, with the sin-
gular exception 3b, which gave the 3-(4-NO2Ph), 4-F-
pyrazole. The trifluoromethyl group regiospecificity
observed in the single-pot process is accounted for
by the preference for the keto form of the in situ gen-
erated 2-fluoro-1,3-diketone formed prior to conden-
sation with arylhydrazines to the pyrazole [5]. Nu-
cleophilic addition by the arylhydrazines occurred
at the most electrophilic site, e.g., the carbonyl ad-
jacent to the –CF3 or 4-NO2Ph group. This strategy
eliminated the likelihood of side reactions; no fluo-
rination of alkyl or aryl groups was observed.
SUPPORTING INFORMATION
Experimental details are available from the corre-
sponding author on request [5,6,18–24].
ACKNOWLEDGMENTS
The authors would like to thank the NCSU NMR fa-
cility for NMR support and the NCSU Mass Spectral
facility for HRMS support.
REFERENCES
[1] Genin, M. J.; Biles, C.; Keiser, B. J.; Poppe, S. M.;
Swaney, S. M.; Tarpley, W.G.; Yagi, Y.; Romero,
D. L. J Med Chem 2000, 43, 1034.
[2] Guzman-Perez, A.; Wester, R. T.; Allen, M. C.; Brown,
J. A.; Buchholz, A. R.; Cook, E. R.; Day, W. W.;
Hamanaka, E. S.; Kennedy, S. P.; Knight, D. R.;
Kowalczyk, P. J.; Marala, R. B.; Mularski, C. J.;
Novomisle, W. A.; Ruggeri, R. B.; Tracey, W. R.; Hill,
R. J. Bioorg Med Chem Lett 2001, 11(6), 803.
[3] Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter,
J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee,
L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers,
R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.;
Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt,
C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.;
Zhang, Y. Y.; Isakson, P. C. J Med Chem 1997, 40,
1347.
[4] Suschitzky, H. Adv Fluorine Chem 1965, 4, 1.
[5] Bumgardner, C.; Sloop, J. J Fluorine Chem 1992, 56,
141.
[6] Sloop, J.; Bumgardner, C.; Loehle, W. J Fluorine
Chem 2002, 118, 135.
[7] Ishikawa, N. Bull Chem Soc Japan 1981, 59, 3221.
[8] Linderman, R.; Kirollos, K. Tetrahedron Lett 1989,
30(16), 2049.
[9] Norris, T.; Colon-Cruz, R.; Ripin, D. H. B. Org Biomol
Chem 2005, 3, 1844.
CONCLUSION
This study of pyrazole formation provides new in-
sight regarding the effectiveness and selectivity of
the F-TEDA class of reagents in electrophilic aro-
matic fluorinations and how reaction conditions
may be modified to improve yields and regiospeci-
ficity. In addition, the effect that substituents have
on influencing product regioselectivity and reactiv-
ity for this important condensation involving arylhy-
drazines and 1,3-diketones has been outlined.
R
This work shows that Selectfluorꢀ is an effective
[10] Singh, S.; Kumar, D.; Batra, H.; Naithani, R.; Rozas,
I.; Elguero, J. Can J Chem 2000, 78, 1109.
[11] Doyle, M. P.; Bryker, W. J. J Org Chem 1979, 44, 1572.
[12] Katoch-Rouse, R.; Hortu, A. G. J Labelled Compd
Radiopharm 2003, 46(1), 93.
[13] Ichikawa, J.; Kobayashi, M.; Noda, Y.; Yokota, N.;
Amano, K.; Minami, T. J Org Chem 1996, 61(8), 2763.
[14] Stephens, C. E.; Blake, J. A. J Fluorine Chem 2004,
125(12), 1939.
electrophilic-fluorinating agent for pyrazoles, which
are not highly deactivated. Yields are commensu-
rate with those of other multiple-step processes, and
reaction times are dramatically reduced. Overall,
monofluorinated pyrazoles are the major product
unless an activated benzene ring is present. Excep-
tions noted appear to be influenced by a combination
of steric and stereoelectronic effects.
[15] Pace, A.; Buscemi, S.; Vivona, N. Org Prep Proc Int
2007, 39, 1.
R
We have also demonstrated that Selectfluorꢀ
[16] Lal, G. S.; Pez, G. P.; Syvret, R. G. Chem Rev 1996,
96, 1737.
[17] Xiao, J.; Shreeve, J. M. J Fluorine Chem 2004, 126(4),
473.
[18] Reid, J.; Calvin, M. J Am Chem Soc 1950, 72, 2948.
[19] Haddadin, M. J. Tetrahedron 1976, 32(6), 719.
[20] Dilli, S.; Robards, K. J. Chromatogr 1984, 312, 109.
[21] Ried, W.; Muehle, G. Justus Liebigs Ann Chem 1962,
656, 119.
[22] Paul, R.; Tchelitcheff, S. Bull Chim Fr 1958, 11, 4179.
[23] Brady, O. L. J Chem Soc 1931, 756.
[24] Butler, R. N.; Hanniffy, J. N.; Stephens, J. C.; Burke,
L. A. J Org Chem 2008, 73(4), 1354.
provides not only selective fluorination capability,
but its ammonium salt byproduct of that fluori-
nation also catalyzes 4-fluoropyrazole formation in
comparable yields to previous methods. This novel,
single-pot approach is effective irrespective of sub-
stituents on the 1,3-diketone or arylhydrazine. This
process offers a new route for selective incorpora-
tion of fluorine into pyrazolic molecules that is with-
out the use of toxic or unstable fluorinating agents,
specialized reaction conditions, or isolation of
intermediates.
Heteroatom Chemistry DOI 10.1002/hc