B. ter Horst, J. van Wermeskerken, B. L. Feringa, A. J. Minnaard
SHORT COMMUNICATION
= +14.5 (c = 0.47, CHCl3)} corresponds well with the val- available for the synthesis of PAT (1) and DAT (2), which
ues of [α] = +14.7 and +16.8 found in the literature for the is currently under investigation in our laboratories.
methyl ester.[13,22]
Supporting Information (see footnote on the first page of this arti-
For the synthesis of mycolipanolic acid we envisioned an
Evans aldol reaction by using the boron enolate of enantio-
pure oxazolidone 16 with aldehyde 13 for the introduction
of the syn-hydroxymethyl unit.[23,24] To prevent over-oxi-
dation or epimerization at the α-stereocenter, aldehyde 13
was prepared freshly for the Evans aldol reaction
(Scheme 2). After the aldol reaction with 16 and workup,
17 was isolated in a moderate 45% yield with perfect ste-
reocontrol.
1
cle): Detailed experimental procedures, H and 13C NMR spectro-
scopic and analytical data of all compounds in Schemes 1 and 2.
Acknowledgments
We thank T. D. Tiemersma-Wegman (GC) and A. Kiewiet (MS)
(Stratingh Institute for Chemistry, University of Groningen) for
technical support and The Netherlands Organization for Scientific
Research (NWO-CW) for financial support.
[1] World Health Organization (WHO), Global Tuberculosis Con-
trol Epidemiology, Strategy, Financing, WHO Press, 1211 Ge-
neva 27, Switzerland, 2009, ISBN 978-92-4-156380-2.
[2] The Mycobacterial Cell Envelope (Eds. M. Daffé, J. M. Reyrat),
ASM press, Washington, 2008, ISBN 978-1-55581-468-7.
[3] a) D. E. Minnikin, L. Kremer, L. G. Dover, G. S. Besra, Chem.
Biol. 2002, 9, 545–553; b) M. Jackson, G. Stadthagen, B. Gic-
quel, Tuberculosis 2007, 87, 78–86.
[4] D. E. Minnikin, G. Dobson, D. Sesardic, M. Ridell, J. Gen.
Microbiol. 1985, 131, 1369–1374.
[5] M. Daffé, C. Lacave, M.-A. Lanéelle, M. Gillois, G. Lanéelle,
Eur. J. Biochem. 1988, 172, 579–584.
[6] M. Muñoz, M.-A. Lanéelle, M. Luquin, J. Torrelles, E. Julian,
V. Ausina, M. Daffé, FEMS Microbiol. Lett. 1997, 157, 251–
259.
Scheme 2. Evans aldol reaction for the introduction of the syn-
vicinal hydroxymethyl motif in mycolipanolic acid (4).
Although a very small amount of a diastereomer of 17
was observed in the 13C NMR spectrum (see Supporting
[7] H. Husseini, S. Elberg, Am. Rev. Tuberc. 1952, 65, 655–672.
Information), this is most likely the minor diastereomer al- [8] A. Lemassu, M.-A. Lanéelle, M. Daffé, FEMS Microbiol. Lett.
1991, 78, 171–176.
ready present in 13 as a result of the two enantioselective
[9] G. S. Besra, R. C. Bolton, M. R. McNeil, M. Ridell, K. E.
1,4-addition reactions (syn/anti ratio of 97:3).[11b] Removal
Simpson, J. Glushka, H. Vanhalbeek, P. J. Brennan, D. E. Min-
of the chiral auxiliary with H2O2 and LiOH yielded the
nikin, Biochemistry 1992, 31, 9832–9837.
desired mycolipanolic acid 4 in 90% crude yield. Unfortu-
nately, we lost material during chromatography, and only
16% of pure 4 was isolated. Later it was found that purifi-
cation on silica with pentane/diethyl ether (5:1) containing
1% acetic acid gave perfect separation, and no problems
were observed during the isolation process. A sample of 4
was converted into the corresponding methyl ester by using
excess (trimethylsilyl)diazomethane in MeOH to compare
the optical rotation to the literature value of the natural
product. The optical rotation of the methyl ester of syn-
thetic 4 {[α] = –7.0 (c = 0.2, CHCl3)} is in perfect agreement
with the literature value of [α] = –7.19.[14]
[10] a) K. Bhatt, S. S. Gurcha, A. Bhatt, G. S. Besra, W. R. Ja-
cobs Jr, Microbiology 2007, 153, 513–520; b) V. S. Dubey, T. D.
Sirakova, P. E. Kolattukudy, Mol. Microbiol. 2002, 45, 1451–
1459.
[11] a) B. ter Horst, B. L. Feringa, A. J. Minnaard, Org. Lett. 2007,
9, 3013–3015; b) B. ter Horst, B. L. Feringa, A. J. Minnaard,
Chem. Commun. 2007, 5, 489–491.
[12] N. Polgar, R. Robinson, Chem. Ind. 1951, 685–686.
[13] D. J. Millin, N. Polgar, J. Chem. Soc. 1958, 1902–1904.
[14] L. Coles, N. Polgar, J. Chem. Soc. C 1968, 1541–1544.
[15] P. A. Wallace, D. E. Minnikin, Chem. Phys. Lipids 1996, 83,
1–8.
[16] K. T. Hiriyanna, T. Ramakrishnan, Arch. Microbiol. 1986, 144,
105–109.
[17] a) E. Casas-Arce, B. ter Horst, B. L. Feringa, A. J. Minnaard,
Chem. Eur. J. 2008, 14, 4157–4159; b) A. de Jong, E.
Casas Arce, T.-Y. Cheng, R. P. van Summeren, B. L. Feringa,
V. Dudkin, D. Crich, I. Matsunaga, A. J. Minnaard, D. B.
Moody, Chem. Biol. 2007, 14, 1232–1242; c) R. P. van Sum-
meren, D. B. Moody, B. L. Feringa, A. J. Minnaard, J. Am.
Chem. Soc. 2006, 128, 4546–4547.
[18] a) S. R. Harutyunyan, T. den Hartog, K. Geurts, A. J. Min-
naard, B. L. Feringa, Chem. Rev. 2008, 108, 2824–2852; b)
F. R. López, A. J. Minnaard, B. L. Feringa, Acc. Chem. Res.
2007, 40, 179–188; c) T. Jerphagnon, M. G. Pizzuti, A. J. Min-
naard, B. L. Feringa, Chem. Soc. Rev. 2009, 38, 1039–1075.
[19] For a review on NMO/TPAP oxidations, see: S. V. Ley, J. Nor-
man, W. P. Griffith, S. P. Marsden, Synthesis 1994, 639–666.
[20] The HWE equivalent of Wittig reagent 14 was also investi-
gated; this, however, always resulted in a lower (E)/(Z) ratio.
[21] J. Guiard, A. Collmann, M. Gilleron, L. Mori, G. De Libero,
J. Prandi, G. Puzo, Angew. Chem. Int. Ed. 2008, 47, 9734–9738.
Conclusions
Mycolipenic and mycolipanolic acid, two methyl-
branched fatty acids from M. tuberculosis, have been suc-
cessfully synthesized by using an improved iterative proto-
col for asymmetric conjugate addition of MeMgBr. Both
compounds have been prepared for the first time as a single
enantiomer. Mycolipenic acid was obtained with an overall
yield of 5% in 11 steps with an average of 84% yield per
step. The closely related mycolipanolic acid was synthesized
enantioselectively with an overall yield of 2% in 11 steps
with an average yield of 75% per step. Both acids are iden-
tical to their counterparts from natural sources and are now
40
www.eurjoc.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2010, 38–41