Journal of the American Chemical Society
ARTICLE
elimination from Pd. Experimental mechanistic studies implicate
ArylꢀCF3 coupling from a cationic five-coordinate intermediate,
and DFT suggests that the CF3 ligand serves as the electrophilic
partner during bond formation. Our investigations into the scope
and mechanism of this reaction have facilitated the development
of a second generation ligand system that enables ArylꢀCF3
coupling at room temperature. This work provides a basis for
the design of novel PdII/IV-catalyzed trifluoromethylation reac-
tions of aryl metal species (metal = B, Sn, Si) or simple arene
CꢀH bonds. Efforts in this area are currently underway in our
group and will be reported in due course.
(b) Senecal, T. D.; Parsons, A. T.; Buchwald, S. L. J. Org. Chem. 2011,
76, 1174–1176.
(10) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y; Zhang, C.-T.; Gu, Y.-C.;
Xiao, J.-C. Angew. Chem., Int. Ed. 2011, 50, 1896–1900.
(11) (a) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009,
1909–1911. (b) Knauber, T.; Arikan, F.; R€oschenthaler, G.; Goossen, L. J.
Chem.—Eur. J. 2011, 17, 2689–2697.
(12) For recent reviews, see: (a) Hassan, J.; Sꢀevignon, M.; Gozzi, C.;
Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359–1470. (b) Beccalli,
E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007,
107, 5318–5365. (c) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2009, 48, 5094–5115. (d) McGlacken, G. P.;
Bateman, L. M. Chem. Soc. Rev. 2009, 38, 2447–2464. (e) Daugulis, O.;
Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074–1086.
(13) For reviews on [M]ꢀCF3 and [M]ꢀRf (Rf = perfluoroalkyl)
complexes, see: (a) Hughes., R. P. Adv. Organomet. Chem. 1990, 31, 183–267.
(b) Morrison, J. A. Adv. Organomet. Chem. 1993, 35, 211–239.
(14) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006,
128, 12644–12645.
(15) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.;
Buchwald, S. L. Science 2010, 328, 1679–1681. Pd-catalyzed coupling
between ArI and [ZnꢀCF3]:Kitazume, T.; Ishikawa, N. Chem. Lett.
1982, 137–140.
(16) Current price for Xantphos = $18 122/mol. Determined based
on the largest quantity of Xantphos available from Sigma-Aldrich on
March 17, 2011 (25 g/$783.00).
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental and computa-
b
tional details and spectroscopic data for new compounds. This
acs.org.
’ AUTHOR INFORMATION
Corresponding Author
(17) Current price for Brettphos = $99 195/mol. Determined based
on the largest quantity of Brettphos available from Strem Chemicals on
March 17, 2011 (5 g/$924.00).
(18) Price for the largest quantity of TESCF3 available from Sigma-
Aldrich on March 17, 2011: 1 g/$72.90, $13 433/mol. Price for the largest
quantity of TMSCF3 available from Sigma-Aldrich on March 17, 2011:
25 mL/$397.00, $2347/mol.
(19) Wang, X.; Truesdale, L.; Yu, J. Q. J. Am. Chem. Soc. 2010,
132, 3648–3649.
(20) Ye, Y.; Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc.
2010, 132, 14682–14687.
’ ACKNOWLEDGMENT
We thank the NIH [GM073836 and F31GM089141
(fellowship to N.D.B.)], the National Science Foundation Grad-
uate Research Fellowship and Murrill Memorial Scholarship
(fellowships to J.B.G.) and the Research Corporation Cottrell
Scholar Program for support of this research. Unrestricted
support from Dupont is also gratefully acknowledged. We thank
Paul Lennon and Jim Windak for assistance with mass spectros-
copy as well as Prof. Tom Cundari and Prof. Brian Yates for
valuable discusions on DFT calculations.
(21) Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010,
132, 2878–2879.
(22) (a) Dick, A. R.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc.
2005, 127, 12790–12791. (b) Whitfield, S. R.; Sanford, M. S. J. Am.
Chem. Soc. 2007, 129, 15142–15143. (c) Dick, A. R.; Remy, M. S.;
Kampf, J. W.; Sanford, M. S. Organometallics 2007, 26, 1365–1370. (d)
Ball, N. D.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 3796–3797. (e)
Racowski, J. M.; Dick, A. R.; Sanford, M. S. J. Am. Chem. Soc. 2009,
131, 10974–10983. (f) Arnold, P. L.; Sanford, M. S.; Pearson, S. M.
J. Am. Chem. Soc. 2009, 131, 13912–13913.
(23) For examples, see: (a) Alsters, P. L.; Engel, P. F.; Hogerheide,
M. P.; Copijn, M.; Spek, A. L.; van Koten, G. Organometallics 1993,
12, 1831–1844. (b) Lagunas, M. C.; Gossage, R. A.; Spek, A. L.; van
Koten, G. Organometallics 1998, 17, 731–741. (c) van Belzen, R.;
Elsevier, C. J.; Dedieu, A.; Veldman, N.; Spek, A. L. Organometallics
2003, 22, 722–736. (d) Canty, A. J.; Denny, M. C.; Patel, J.; Sun, H.;
Skelton, B. W.; White, A. H. J. Organomet. Chem. 2004, 689, 672–677.
(e) Canty, A. J.; Denney, M. C.; Skelton, B. W.; White, A. H. Organo-
metallics 2004, 23, 1122–1131. (f) Yamamoto, Y.; Kuwabara, S.; Matsuo,
S.; Ohno, T.; Nishiyama, H.; Itoh, K. Organometallics 2004,
23, 3898–3906. (g) Kaspi, A. W.; Yahav-Levi, A.; Goldberg, I.; Vigalok,
A. Inorg. Chem. 2008, 47, 5–7. (h) Furuya, T.; Benitez, D.; Tkatchouk,
E.; Strom, A. E.; Tang, P.; Goddard, W. A., III; Ritter, T. J. Am. Chem. Soc.
2010, 132, 3793–3807. (i) Vicente, J.; Arcas, A.; Julia-Hernandez, F.;
Bautista, D. Chem. Commun. 2010, 46, 7253–7255. (j) Williamson, O.;
Zavalij, P. Y.; Zhang, J.; Khaskin, E.; Vedernikov, A. N. J. Am. Chem. Soc.
2010, 132, 14400–14402. (k) Zhao, X.; Dong, V. M. Angew. Chem., Int.
Ed. 2011, 50, 932–934.
’ REFERENCES
(1) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305–321.
(2) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc.
Rev. 2008, 37, 320–330.
(3) (a) Ma, J. A.; Cahard, D. Chem. Rev. 2004, 104, 6119–6146. (b)
Ma, J. A.; Cahard, D. Chem. Rev. 2008, 108, PR1–PR43. (c) Prakash,
G. K. S.; Chacko, S. Curr. Opin. Drug Discovery Dev. 2008, 11, 793–802.
(d) Shibata, N.; Mizuta, S.; Kawai, H. Tetrahedron: Asymmetry 2008,
19, 2633–2644.
(4) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160–171.
(5) Swarts, F. Bull. Acad. R. Belg. 1892, 24, 415–429.
(6) (a) Henne, A. L.; Whaley, A. M.; Stevenson, J. K. J. Am. Chem.
Soc. 1941, 63, 3478–3479. (b) Furuta, S.; Kuroboshi, M.; Hiyama, T.
Bull. Chem. Soc. Jpn. 1999, 72, 805–819.
(7) Yang, J. J.; Kirchmeier, R. L.; Shreeve, J. M. J. Org. Chem. 1998,
63, 2656–2660.
(8) For examples of Cu-mediated reactions of TMSCF3 with aryl
halides, see: (a) Kobayashi, Y.; Kumadaki, I. Tetrahedron Lett. 1969,
10, 4095–4096. (b) Konderatenko, N. V.; Vechirko, E. P.; Yagupolskii,
L. M. Synthesis 1980, 932–933. (c) Matsui, K.; Tobita, E.; Ando, M.;
Kondo, K. Chem. Lett. 1981, 10, 1719–1720. (d) Suzuki, H.; Yoshida, Y.;
Osuka, A. Chem. Lett. 1982, 11, 135–136. (e) Burton, D. J.; Wiemers,
D. M. J. Am. Chem. Soc. 1985, 107, 5014–5015. (f) Urata, H.; Fuchikami,
T. Tetrahedron Lett. 1991, 32, 91–94. (g) Dubinina, G. G.; Furutachi, H.;
Vicic, D. A. J. Am. Chem. Soc. 2008, 130, 8600–8601. (h) Dubinina,
G. G.; Ogikubo, J.; Vicic, D. A. Organometallics 2008, 27, 6233–6235.
(9) For the Cu-mediated reaction of TMSCF3 with aryl boronic
acids, see: (a) Chu, L.; Qing, F.-L. Org. Lett. 2010, 12, 5060–5063.
(24) (a) Culkin, D. A.; Hartwig, J. F. Organometallics 2004,
23, 3398–3416. (b) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc.
2006, 128, 4632–4641. (c) McReynolds, K. A.; Lewis, R. S.; Ackerman,
7583
dx.doi.org/10.1021/ja201726q |J. Am. Chem. Soc. 2011, 133, 7577–7584