5586 Biochemistry, Vol. 49, No. 26, 2010
Kim et al.
FIGURE 6: Suggested mechanism for formation of (3S)-equol from (3S,4R)-THD by the THD reductase. The depicted mechanism entails radical
intermediates and a radical initiating cofactor, but it does not necessarily follow the SAM-utilizing ribonucleotide reductase mechanism.
to explain this unprecedented biochemical reaction. We note that
many unusual microbial transformations of the natural pro-
ducts have been recently found to involve radical enzymes, often
involving SAM (S-adenosylmethionine), and it seems highly
plausible that THD reductase, the genes for which have yet to
be cloned and sequenced, could be a member of this growing
class of enzymes (28). Furthermore, THD reductase activity is
extremely oxygen-sensitive, which is another hallmark of all
radical SAM enzymes. Currently, the isolation and characteriza-
tion of the THD reductase are being studied.
ligand for estrogen receptor β, is the exclusive enantiomeric form of
the soy isoflavone metabolite produced by human intestinal bacterial
flora. Am. J. Clin. Nutr. 81, 1072–1079.
10. Hur, H. G., Lay, J. O., Jr., Berger, R. D., Freeman, J. P., and Rafii,
F. (2000) Isolation of human intestinal bacteria metabolizing the
natural isoflavone glycosides daidzin and genistin. Arch. Microbiol.
174, 422–428.
11. Schoefer, L., Mohan, R., Braune, A., Birringer, M., and Blaut, M.
(2002) Anaerobic C-ring cleavage of genistein and daidzein by
Eubacterium ramulus. FEMS Microbiol. Lett. 208, 197–202.
12. Wang, X. L., Kim, K. T., Lee, J. H., Hur, H. G., and Kim, S. I. (2004)
C-ring cleavage of isoflavones daidzein and genistein by a newly-
isolated human intestinal bacterium Eubacterium ramulus Julong 601.
J. Microbiol. Biotechnol. 14, 766–771.
13. Tamura, M., Tsushida, T., and Shunohara, K. (2007) Isolation of an
isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40,
from human faeces. Anaerobe 13, 32–35.
14. Jin, J. S., Nishihata, T., Kakiuchi, N., and Hattori, M. (2008)
Biotransformation of C-glucosylisoflavone puerarin to estrogenic
(3S)-equol in co-culture of two human intestinal bacteria. Biol.
Pharm. Bull. 31, 1621–1625.
SUPPORTING INFORMATION AVAILABLE
HPLC chromatogram, NMR spectra of trans-THD and
equol, and EI-MS spectrum of (2,3,4,4-d4)-equol. This material
15. Yokoyama, S., and Suzuki, T. (2008) Isolation and characterization
of a novel equol-producing bacterium from human feces. Biosci.,
Biotechnol., Biochem. 72, 2660–2666.
16. Kim, M., Kim, S.-I., Han, J., Wang, X.-L., Song, D.-G., and Kim,
S.-U. (2009) Stereospecific biotransformation of dihydrodaidzein into
(3S)-equol by the human intestinal bacterium Eggerthella strain
Julong 732. Appl. Environ. Microbiol. 75, 3062–3068.
17. Kim, M., Won, W., and Han, J. (2010) Absolute configuration
determination of isoflavan-4-ol stereoisomers. Bioorg. Med. Chem.
Lett. (in press).
18. Song, D.-G. (2007) Studies on S-equol producing enzyme from
anaerobic bacterium Julong 732. Master’s Thesis, Seoul National
University, Seoul, Korea.
REFERENCES
1. Kim, M., Han, J., and Kim, S.-U. (2008) Isoflavone daidzein:
Chemistry and bacterial metabolism. J. Appl. Biol. Chem. 51,
253–261.
2. Liggins, J., Bluck, L. J. L., Runswick, S., Atkinson, C., Coward,
W. A., and Bingham, S. A. (2000) Daidzein and genistein content of
fruits and nuts. J. Nutr. Biochem. 11, 326–331.
3. Mazur, W., and Adlercreutz, H. (1998) Natural and anthropogenic
environmental estrogens: The scientific basis for risk assessment:
Naturally occurring estrogens in food. Pure Appl. Chem. 70, 1759–
1776.
4. Hwang, C. S., Kwak, H. S., Lim, H. J., Lee, S. H., Kang, Y. S., Choe,
T. B., Hur, H. G., and Han, K. O. (2006) Isoflavone metabolites and
their in vitro dual functions: They can act as an estrogenic agonist or
antagonist depending on the estrogen concentration. J. Steroid
Biochem. Mol. Biol. 101, 246–253.
€
19. Bjorkhem, I. (1969) Mechanism and stereochemistry of the enzymatic
conversion of a Δ4-3-oxosteroid into a 3-oxo-5R-steroid. Eur. J.
Biochem. 8, 345–351.
20. Wang, X.-L., Hur, H.-G., Lee, J. H., Kim, K. T., and Kim, S.-I. (2005)
Enantioselective synthesis of S-equol from dihydrodaidzein by a
newly isolated anaerobic human intestinal bacterium. Appl. Environ.
Microbiol. 71, 214–219.
ꢀ
5. Lee, H. P., Gourley, L., Duffy, S. W., Esteve, J., Lee, J., and Day,
N. E. (1991) Dietary effects on breast-cancer risk in Singapore.
Lancet 337, 1197–1200.
6. Miyase, T., Sano, M., Nakai, H., Muraoka, M., Nakazawa, M.,
Suzuki, M., Yoshino, K., Nishihara, Y., and Tanai, J. (1999) Anti-
oxidants from Lespedeza homoloba (I). Phytochemistry 52, 303–310.
7. Arora, A., Nair, M. G., and Strasburg, G. M. (1998) Antioxidant
activities of isoflavones and their biological metabolites in a liposomal
system. Arch. Biochem. Biophys. 356, 133–141.
21. Allemann, R. K. (2008) Chemical wizardry? The generation of
diversity in terpenoid biosynthesis. Pure Appl. Chem. 80, 1791–1798.
22. Motokura, K., Nakagiri, N., Mizugaki, T., Ebitani, K., and Kaneda,
K. (2007) Nucleophilic Substitution Reactions of Alcohols with Use
of Montmorillonite Catalysts as Solid Brønsted Acids. J. Org. Chem.
72, 6006–6015.
8. Lampe, J. W., Karr, S. C., Hutchins, A. M., and Slavin, J. L. (1998)
Urinary equol excretion with a soy challenge: Influence of habitual
diet. Proc. Soc. Exp. Biol. Med. 217, 335–339.
23. Won, D., Shin, B.-K., and Han, J. (2008) Synthesis and the absolute
configurations of isoflavanone enantiomers. J. Appl. Biol. Chem. 51,
17–19.
9. Setchell, K. D. R., Clerici, C., Lephart, E. D., Cole, S. J., Heenan, C.,
Castellani, D., Wolfe, B. E., Nechemias-Zimmer, L., Brown, N. M.,
Lund, T. D., Handa, R. J., and Heubi, J. E. (2005) S-Equol, a potent
24. Won, D., Shin, B.-K., Kang, S. I., Hur, H.-G., Kim, M., and Han, J.
(2008) Absolute configurations of isoflavan-4-ol stereoisomers.
Bioorg. Med. Chem. Lett. 18, 1952–1957.