V. B. Gandhi et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1023–1026
1025
Table 1
SAR of 2-substituted 3-oxoisoindoline-4-carboxamide
O
NH2
O
N R
1
Compound
R
PARP-1a
Cellulara
(Ki, nM)
(EC50, nM)
a
b
CH3
i-Bu
123
112
ND
>1000
c
d
e
172
59
>1000
160
NH
NH
NH
33
51
Figure 4. X-ray co-crystal structure of PARP-1 and 1e.18
f
g
140
377
384
ND
374
ND
In conclusion, through rational design of a seven-membered
ring intramolecular hydrogen bond utilizing a carbonyl group
and a carboxamide functionality, we have identified 3-oxoisoindo-
line-4-carboxamide as a lead inhibitor of poly(ADP-ribose) poly-
merase-1 (PARP-1). Preliminary SAR study of this series of PARP
inhibitors indicates that the presence and position of an amine
functionality has significant impact both on enzymatic and cellular
potency. An X-ray co-crystal structure of PARP-1 with 1e con-
firmed the critical multiple hydrogen bonding interactions of the
4-carboxamide with two PARP residues, as well as intramolecu-
larly with the 3-carbonyl to lock the amide in an optimal planar
conformation. Additional hydrogen bond interaction to Gly-888
was also achieved through an appropriately-oriented piperidine
nitrogen.
N
H
h
NH
i
j
164
261
ND
ND
N
H
k
l
70
53
372
53
N
N
Acknowledgment
N
m
n
391
32
ND
The authors are grateful to the Abbott analytical department for
acquisition of 1H NMR and MS.
120
NH
NH
References and notes
o
314
ND
1. Virág, L.; Szabó, C. Pharmacol. Rev. 2002, 54, 375.
2. (a) Bellocchi, D.; Macchiarulo, A.; Costantino, G.; Pellicciari, R. Bioorg. Med.
Chem. 2005, 13, 1151; (b) Jagtap, P.; Szabó, C. Nat. Rev. Drug Disc. 2005, 4, 421.
3. (a) Dunn, D.; Husten, J.; Ator, M. A.; Chatterjee, S. Bioorg. Med. Chem. Lett. 2007,
17, 542; (b) Menear, K. A.; Adcock, C.; Cuenca Alonso, F.; Blackburn, K.; Copsey,
L.; Drzewiecki, J.; Fundo, A.; Le Gall, A.; Gomez, S.; Javaid, H.; Fenandez Lence,
C.; Martin, N. M. B.; Mydlowski, C.; Smith, G. C. M. Bioorg. Med. Chem. Lett. 2008,
18, 3942.
p
q
48
22
N
N
N
>9500
ND
4. Cepeda, V.; Fuertes, M.; Castilla, J.; Alonso, C.; Quevedo, C.; Soto, M.; Perez, J. M.
Recent Patents on Anticancer Drug Discovery 2006, 1, 39.
ND = not determined.
a
5. (a) Penning, T. D.; Zhu, G.-D.; Gandhi, V. B.; Gong, J.; Thomas, S.; Lubisch, W.;
Grandel, R.; Wernet, W.; Park, C. H.; Fry, E. H.; Liu, X.; Shi, Y.; Klinghofer, V.;
Johnson, E. F.; Donawho, C. K.; Frost, D. J.; Bontcheva-Diaz, V.; Bouska, J. J.;
Olson, A. M.; Marsh, K. C.; Luo, Y.; Rosenberg, S. H.; Giranda, V. L. Bioorg. Med.
Chem. 2008, 16, 6965; (b) Griffin, R. J.; Srinivasan, S.; White, A. W.; Bowman, K.;
Calvert, A. H.; Curtin, N. J.; Newell, D. R.; Golding, B. T. Pharm. Sci. 1996, 2, 43;
(c) White, A. W.; Almassy, R.; Calvert, A. H.; Curtin, N. J.; Griffin, R. J.;
Hostomsky, Z.; Maegley, K.; Newell, D. R.; Srinivasan, S.; Golding, B. T. J. Med.
Chem. 2000, 43, 4084.
6. Zhu, G.-D.; Gandhi, V. B.; Gong, J.; Thomas, S.; Luo, Y.; Liu, X.; Shi, Y.; Klinghofer,
V.; Johnson, E. F.; Frost, D.; Donawho, C.; Jarvis, K.; Bouska, J.; Marsh, K. C.;
Rosenberg, S. H.; Giranda, V. L.; Penning, T. D. Bioorg. Med. Chem. Lett. 2008, 18,
3955.
7. Penning, T. D.; Zhu, G.-D.; Gandhi, V.; Gong, J.; Liu, X.; Shi, Y.; Klinghofer, V.;
Johnson, E. F.; Donawho, C.; Frost, D.; Bontcheva-Diaz, K.; Bouska, J.; Osterling,
D.; Olson, A.; Marsh, K.; Luo, Y.; Giranda, V. L. J. Med. Chem. 2009, 52, 514.
8. (a) Plummer, E. R. Curr. Opin. Pharmacol. 2006, 6, 364; (b) Horváth, E. M.; Szabó,
C. Drug News Perspect. 2007, 20, 171; (c) Ratnam, K.; Low, J. A. Clin. Cancer Res.
2007, 13, 1383.
Assays follow the same protocol as previously described.5 Values are means of
two or more experiments, all assays generated data within twofold of mean.
to form critical hydrogen-bond interactions with the serine and
glycine amino acid residues of the enzyme.
An X-ray co-crystal structure of PARP-1 with 1e is depicted in
Figure 4. The carboxamide group of 1e is involved in key hydro-
gen-bond interactions with both Gly-863 and Ser-904, in accor-
dance with previous literature reports.17 In addition, the NH of
the piperidine ring is involved in a hydrogen-bond interaction with
Gly-888 and lastly the p-stacking interaction between the oxoiso-
indoline ring and Tyr-907 is also observed. This Gly-888 interac-
tion likely explains why significant differences in potency are
observed with changes in the orientation of the basic amino
group.
9. Donawho, C. K.; Luo, Y.; Penning, T. D.; Bauch, J. L.; Bouska, J. J.; Bontcheva-
Diaz, V. D.; Cox, B. F.; DeWeese, T. L.; Dillehay, L. E.; Ferguson, D. C.;