Article
Inorganic Chemistry, Vol. 49, No. 6, 2010 2835
Unfortunately, iridium, as well as platinum which also forms
luminescent cyclometalated complexes, are relatively rare and
costly, so that an impetus exists to find suitable emitters based
on less expensive metals. In this context, the luminescent
properties of copper(I) complexes have driven recent interest,
and a limited number of OLED devices containing such
emitters have been studied.28-38 For the preparation of devices
by chemical vapor deposition (CVD), other factors regarding
potential dopant emitters must also be considered, most nota-
bly, their thermal stability and sublimability. While many Cu(I)
complexes are photoluminescent, they generally do not satisfy
the last criterion for CVD device preparation because they are
cationic or highly aggregated, making them unsublimable.
In 2005, Harkins and Peters reported a neutral dinuclear
Cu(I) complex that exhibited an impressive phosphorescence
quantum yield and excited state lifetime.39 The complex was
also found to be sublimable and thermally stable, leading to its
incorporation in an OLED device with an external quantum
efficiency of 16%.40 Related mononuclear complexes show
similar photophysical properties.41 On the basis of these results,
the synthesis and study of new Cu(I) complexes that possess
charge neutrality for sublimability, thermal stability for CVD,
and bright photoluminescence become even more compelling.
While the majority of emissive Cu(I) complexes studied con-
tain nitrogen-heterocycle ligands,31,42-47 one type of hetero-
cycle which has not been investigated thoroughly as a ligand
is the 1,4-disubstituted-1,2,3-triazole. In fact, the literature is
nearly void of isolated copper(I) complexes of the 1,2,3-tria-
zole, although Fokin and others have shown that chelating
polytriazoles are viable ligands for accelerating by increasing
the yield and decreasing the reaction time in triazole synthesis,
presumably by stabilizing intermediates of the active Cu(I)
catalyst.48 The closest example of an isolated complex is a
tetranuclear L4Cu4Br4 complex where L = 1,2,3-triazole-1,5-
R-quinoline.49 The ligand was obtained by the Cu(II)-pro-
moted oxidation of quinoline-2-carbaldehyde hydrazone, and
the copper(I) complex was isolated in situ as a tetranuclear step-
type cluster that exhibited solid state emission with λmax=400 nm.
While an impressive number of papers have dealt with
triazole synthesis,50 their use in constructing complicated
architectures,51,52 and triazoles as links between molecular
components such as porphyrins and fullerenes,53 there are a
limited numberof reported transition metal complexes of 1,4-
disubstituted triazoles. The virtues of making 1,4-disubsti-
tuted-1,2,3-triazoles by Sharpless “click” chemistry (eq 1)54
and their relative stability once formed provide a strong case
for increased study of triazole coordination chemistry. To
date, palladium(II) and platinum(II) complexes have been
prepared with monodentate 1,2,3-triazoles55 and chelating
phosphine-triazole ligands.56 Ruthenium(II) complexes with
2-triazolo-pyridine ligands have been prepared for compar-
ison of the electronic properties of a chelating triazole to
2,20-bipyridyl.57,58 The complex [ReCl(CO)3(Bn-pyta)]
(Bn-pyta = 1-benzyl-4-(2-pyridyl)-1,2,3-triazole) exhibits a
blue shift in its electronic spectrum relative to that of
[ReCl(CO)3(bpy)],59 consistent with a higher lowest unoccu-
pied molecular orbital (LUMO) energy for the pyta
complex.
(25) Yu, X. M.; Zhou, G. J.; Lam, C. S.; Wong, W. Y.; Zhu, X. L.; Sun,
J. X.; Wong, M.; Kwok, H. S. J. Organomet. Chem. 2008, 693, 1518.
(26) Seo, J. H.; Kim, I. J.; Kim, Y. K.; Kim, Y. S. Thin Solid Films 2008,
516, 3614.
(27) Su, H. C.; Chen, H. F.; Fang, F. C.; Liu, C. C.; Wu, C. C.; Wong,
K. T.; Liu, Y. H.; Peng, S. M. J. Am. Chem. Soc. 2008, 130, 3413.
(28) Ma, Y. G.; Chan, W. H.; Zhou, X. M.; Che, C. M. New J. Chem.
1999, 23, 263.
(29) Ma, Y. G.; Che, C. M.; Chao, H. Y.; Zhou, X. M.; Chan, W. H.;
Shen, J. C. Adv. Mater. 1999, 11, 852.
(30) Wang, Y. M.; Teng, F.; Hou, Y. B.; Xu, Z.; Wang, Y. S.; Fu, W. F.
Appl. Phys. Lett. 2005, 87.
(31) Armaroli, N.; Accorsi, G.; Holler, M.; Moudam, O.; Nierengarten,
J. F.; Zhou, Z.; Wegh, R. T.; Welter, R. Adv. Mater. 2006, 18, 1313.
(32) Che, G. B.; Su, Z. S.; Li, W. L.; Chu, B.; Li, M. T.; Hu, Z. Z.; Zhang,
Z. Q. Appl. Phys. Lett. 2006, 89.
(33) Su, Z. S.; Che, G. B.; Li, W. L.; Su, W. M.; Li, M. T.; Chu, B.; Li, B.;
Zhang, Z. Q.; Hu, Z. Z. Appl. Phys. Lett. 2006, 88.
(34) Moudam, O.; Kaeser, A.; Delavaux-Nicot, A.; Duhayon, C.; Holler,
M.; Accorsi, G.; Armaroli, N.; Seguy, I.; Navarro, J.; Destruel, P.;
Nierengarten, J. F. Chem. Commun. 2007, 3077.
(35) Tsuboyama, A.; Kuge, K.; Furugori, M.; Okada, S.; Hoshino, M.;
Ueno, K. Inorg. Chem. 2007, 46, 1992.
(36) Si, Z. J.; Li, J.; Li, B.; Liu, S. Y.; Li, W. L. J. Lumin. 2009, 129, 181.
(37) Zhang, L. M.; Li, B.; Su, Z. M. J. Phys. Chem. C. 2009, 113, 13968.
(38) Zhang, Q. S.; Ding, J. Q.; Cheng, Y. X.; Wang, L. X.; Xie, Z. Y.; Jing,
X. B.; Wang, F. S. Adv. Funct. Mater. 2007, 17, 2983.
(39) Harkins, S. B.; Peters, J. C. J. Am. Chem. Soc. 2005, 127, 2030.
(40) Deaton, J. C. K.; Denis, Y.; Young; Ralph, H.; Pawlik; Thomas, D.;
Peters; Jonas, C.; Mickenberg; Seth, F.; Eisenberg; Richard, S. Dig. Tech.
Pap. - Soc. Inf. Disp. Int. Symp. 2009, 40, 691.
(41) Miller, A. J. M.; Dempsey, J. L.; Peters, J. C. Inorg. Chem. 2007, 46,
7244.
(42) Lavie-Cambot, A.; Cantuel, M.; Leydet, Y.; Jonusauskas, G.;
Bassani, D. M.; McClenaghan, N. D. Coord. Chem. Rev. 2008, 252, 2572.
(43) Armaroli, N.; Accorsi, G.; Cardinali, F.; Listorti, A. In Photochem-
istry and Photophysics of Coordination Compounds I; Springer: Berlin, 2007;
Vol. 280, p 69.
In light of the scope and functional group tolerance of 1,4-
disubstituted-1,2,3-triazole synthesis, as well as the tunability
of their electronic and steric properties, we undertook a study
of Cu(I) 1,2,3-triazolate complexes that would permit the
synthesis of new luminescent neutral complexes. It was
hypothesized that a chelating bis-triazole ligand with geo-
metry rigidly defined by a phenylene backbone would possess
a π* orbital of appropriate energy for charge transfer from
(48) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett.
2004, 6, 2853.
(49) Xiang, J.; Yin, Y. G.; Mei, P. Inorg. Chem. Commun. 2007, 10, 1168.
(50) Gil, M. V.; Arevalo, M. J.; Lopez, O. Synthesis-Stuttgart 2007, 1589.
(51) Zhang, Q.; Takacs, J. M. Org. Lett. 2008, 10, 545.
(52) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249.
(53) Fazio, M. A.; Lee, O. P.; Schuster, D. I. Org. Lett. 2008, 10, 4979.
(54) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed.. 2002, 41, 2596.
(55) Suijkerbuijk, B.; Aerts, B. N. H.; Dijkstra, H. P.; Lutz, M.; Spek,
A. L.; van Koten, G.; Gebbink, R. Dalton Trans. 2007, 1273.
(56) Detz, R. J.; Heras, S. A.; de Gelder, R.; van Leeuwen, P.; Hiemstra,
H.; Reek, J. N. H.; van Maarseveen, J. H. Org. Lett. 2006, 8, 3227.
(57) Richardson, C.; Fitchett, C. M.; Keene, R.; Steel, P. J. Dalton Trans.
2008, 2534.
(58) Fletcher, J. T.; Bumgarner, B. J.; Engels, N. D.; Skoglund, D. A.
Organometallics 2008, 27, 5430.
(59) Obata, M.; Kitamura, A.; Mori, A.; Kameyama, C.; Czaplewska,
J. A.; Tanaka, R.; Kinoshita, I.; Kusumoto, T.; Hashimoto, H.; Harada, M.;
Mikata, Y.; Funabiki, T.; Yano, S. Dalton Trans. 2008, 3292.
(44) Armaroli, N.; Accorsi, G.; Bergamini, G.; Ceroni, P.; Holler, M.;
Moudam, O.; Duhayon, C.; Delavaux-Nicot, B.; Nierengarten, J. F. Inorg.
Chim. Acta 2007, 360, 1032.
(45) Kalsani, V.; Schmittel, M.; Listorti, A.; Accorsi, G.; Armaroli, N.
Inorg. Chem. 2006, 45, 2061.
(46) Armaroli, N. Chem. Soc. Rev. 2001, 30, 113.
(47) Scaltrito, D. V.; Thompson, D. W.; O’Callaghan, J. A.; Meyer, G. J.
Coord. Chem. Rev. 2000, 208, 243.