Article
Macromolecules, Vol. 43, No. 6, 2010 2711
of the diffraction efficiency of SRG with the irradiation time.
The diffraction efficiency of the polymer film rapidly in-
creased to about 0.82% until saturation level at 1000 s. In the
same way, the diffraction efficiency of SRG with a thickness
of 225 nm film was up to about 0.28% with saturation level at
1300 s, which was much lower than that of sample with a
thickness of 456 nm.24
(b) Beth, L. L.; Stefan, A. M.; Hanrry, A. A. Adv. Mater. 2004, 16,
1746–1750. (c) Zeng, Q.; Li, Z. A.; Li, Z.; Ye, C.; Qin, J. G.; Tang,
B. Z. Macromolecules 2007, 40, 5634–5637. (d) Yu, H.; Shishido,
A.; Iyoda, Y.; Ikeda, T. Macromol. Rapid Commun. 2007, 28, 927–
931.
(4) (a) Chen, X. B.; Zhang, Y. H.; Liu, B. J.; Zhang, J. J.; Wang, H.;
Zhang, W. Y.; Chen, Q. D.; Pei, S. H.; Jiang, Z. H. J. Mater. Chem.
2008, 18, 5019–5026. (b) Li, W. H.; Nagano, S.; Seki, T. New J. Chem.
2009, 33, 1343–1348. (c) Wang, D. R.; Ye, G.; Zhu, Y.; Wang, X. G.
Macromolecules 2009, 42, 2651–2657. (d) Kulikovska, O.; Goldenberg,
L. M.; Kulikovsky, L.; Stumpe, J. Chem. Mater. 2008, 20, 3528–
3534.
Conclusion
Four polymer samples labeled as PEAPA1, PEAPA2, PEH-
PA1, and PEHPA2 were prepared from the monomer 30-ethy-
nylphenyl[4-(4-azidobutoxy)phenyl]azobenzene (EAPA) and
30-ethynylphenyl[4- hexoxyl(2-azido-2-methylpropionate)phenyl]-
azobenzene (EHPA). The polymers PEAPA1 and PEHPA1 were
obtained through copper(I) catalysis “click” chemistry technique,
while PEAPA2 and PEHPA2 were obtained through thermal 1,3-
dipolar cycloaddition technique. All of these polymers showed
high thermally resistance (Td above 330 ꢀC). The polymers
PEHPA2 and PEAPA2 showed better solubility than PEHPA1
and PEAPA1 in common organic solvents due to the formation
of regiorandom structures as well as no complex of copper ion
with polymer triazole rings. Most of all, PEHPA2 showed good
film-forming ability, which offered the opportunity to explore
these polymers for optical devices for the first time. The film
prepared from PEHPA2 showed efficient surface relief gratings
(SRGs) formation ability. The diffraction efficiency from SRG
with film thickness of 465 nm was measured to be about 0.82%.
The reported result provided a convenient alternative route to
preparation main-chain azobenzene polymers with good solu-
bility and film formation property. This should be favored
in the investigation of optical devices based on azobenzene poly-
mers.
(5) (a) Li, Y.; He, Y.; Tong, X.; Wang, X. J. Am. Chem. Soc. 2005, 127,
2402–2403. (b) Ho, M. S.; Barrett, C.; Paterson, J.; Esteghamatian, M.;
Natansohn, A.; Rochon, P. Macromolecules 1996, 29, 4613–4618.
(c) Andruzzi, L.; Hvilsted, S.; Ramanujam, P. S. Macromolecules 1999,
32, 448–454.
(6) (a) Rochon, P.; Batalla, E.; Natansohn, A. Appl. Phys. Lett. 1995,
66, 136–138. (b) Kim, D. Y.; Tripathy, S. K.; Li, L.; Kumar, J. Appl.
Phys. Lett. 1995, 66, 1166–1168.
(7) (a) Zhang, Y. Y.; Cheng, Z. P.; Chen, X. R.; Zhang, W.; Wu, J. H.;
Zhu, J.; Zhu, X. L. Macromolecules 2007, 40, 4809–4817. (b) Zhao,
Y.; Qi, B.; Tong, X.; Zhao, Y. Macromolecules 2008, 41, 3823–
3831. (c) Forcen, P.; Oriol, C.; Sanchez, R.; Alcala, S.; Hvilsted;
Jankova, K.; Loos, J. J. Polym. Sci., Part A: Polym. Chem. 2007,
45, 1899–1910.
(8) (a) Wu, Y, L.; Natansohn, A.; Rochon, P. Macromolecules 2004,
37, 6090–6095. (b) Che, P. C.; He, Y. N.; Wang, X. G. Macromolecules
2005, 38, 8657–8663. (c) Lee, T. S.; Kim, D. Y.; Jiang., X. L.; Li., L.;
Kunar, J.; Tripathy, S. J. Polym. Sci., Part A: Polym. Chem. 1998, 36,
283–289. (d) Yu, X. W.; Luo, Y. H.; Deng, Y.; Yan, Q.; Zou, G.; Zhang,
Q. J. Eur. Polym. J. 2008, 44, 881–888.
(9) (a) Tsutsumi, N.; Yoshizaki, S.; Sakai, W.; Kiyotsukuri, T. Macro-
molecules 1995, 28, 6437–6442. (b) Lee, T. S.; Kim, D. Y.; Jiang, X. L.;
Li, L.; Kumar, J.; Tripathy, S. J. Polym. Sci., Part A: Polym. Chem.
1998, 36, 283–289. (c) Sandhya, K. Y.; Pillai, C. K. S.; Sato, M.;
Tsutsumi, N. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 1527–
1535. (d) Lee, T. S.; Kim, D. Y.; Jiang, X. L.; Li, L.; Kumar, J.; Tripathy,
S. Macromol. Chem. Phys. 1997, 198, 2279–2289.
(10) (a) Xu, Z. S.; Drnoyan, V.; Natansohn, A.; Rochon, P. J. Polym.
Sci., Part A: Polym. Chem. 2000, 38, 2245–2253. (b) Wu, Y. L.;
Natansohn, A.; Rochon, P. Macromolecules 2001, 34, 7822–7828.
(11) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A.,
Ed.; Wiley: New York, 1984; pp 1-176.
(12) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int.
Ed. 2001, 40, 2004–2021. (b) Baut, N. L.; Diaz, D. D.; Punna, S.; Finn,
M. G.; Brown, H. R. Polymer 2007, 48, 239–244. (c) Bakbak, S.;
Leech, P. J.; Carson, B. E.; Saxena, S.; King, W. P.; Bunz, U. H. F.
Macromolecules 2006, 39, 6793–6795. (d) Barner, L.; Davis, T. P.;
Stenzel, M. H.; Barner-Kowollik, C. Macromol. Rapid Commun.
2007, 28, 539–559.
(13) (a) Yuan, Y. Y.; Wang, Y. C.; Du, J. Z.; Wang, J. Macromolecules
2008, 41, 8620–8625. (b) Malkoch, M.; Schleicher, K.; Drockenmuller,
E.; Hawker, C. J.; Russell, T. P.; Wu, P.; Fokin, V. V. Macromolecules
2005, 38, 3663–3678. (c) Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin,
V. V.; Sharpless, K. B.; Finn, M. G. J. Am. Chem. Soc. 2003, 125,
3192–3193. (d) Opsteen, J. A.; Hest, J. C. M. Chem. Commun. 2005, 1,
57–59.
Acknowledgment. The financial support from the National
Nature Science Foundation of China (Nos. 20874069, 50803044,
20974071, and 20904036), the Specialized Research Fund for the
Doctoral Program of Higher Education contract grant (No.
200802850005), and the Qing Lan Project and the Program of
Innovative Research Team of Soochow University is gratefully
acknowledged.
Supporting Information Available: 1H NMR spectra of the
compounds, monomer EAPA, EHPA, polymer PEAPA2
(Mn,GPC = 4300 g mol-1, Mw/Mn = 1.86) in CDCl3; 13C NMR
spectra of the monomer EAPA, EHPA, polymer PEHPA2
in CDCl3; DSC and TGA spectra of polymers. This mate-
acs.org.
(14) Shen, X. Q.; Liu, H. W.; Li, Y. S.; Liu, S. Y. Macromolecules 2008,
41, 2421–2425.
References and Notes
(15) (a) Li, Z. A.; Yu, G.; Hu, P.; Ye, C.; Liu, Y. Q.; Qin, J. G.; Li, Z.
Macromolecules 2009, 42, 1589–1596. (b) Li, Z. A.; Yu, G.; Ye, C.;
Qin, J. G.; Li, Z. Macromolecules 2009, 42, 6463–6472.
(16) Qin, A. J.; Lam, J. W. Y.; Tang, L.; Jim, C. K. W.; Zhao, H.; Sun,
J. Z.; Yang, B. Z. Macromolecules 2009, 42, 1421–1424.
(17) (a) Meudtner, R.; Hecht, S. Macromol. Rapid Commun. 2008, 29,
347–351. (b) Nagao, Y.; Takasu, A. Macromol. Rapid Commun. 2009,
30, 199–203. (c) Binauld, S.; Damiron, D.; Hamaide, T.; Pasault,
J. P.; Fleury, E.; Drockenmuller, E. Chem. Commun. 2008, 35, 4138–
4140. (d) Chernykh, A.; Agag, T.; Ishida, H. Polymer 2009, 50, 382–
390.
(18) Qin, A. J.; Lam, J. W. Y.; Jim, C. K. W.; Zhang, L.; Yan, J. J.;
Haussler, M.; Liu, J. Z.; Dong, Y. Q.; Liang, D. H.; Chen, E. Q.;
Jia, G. C.; Tang, B. Z. Macromolecules 2008, 41, 3808–3822.
(19) (a) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org.
Lett. 2004, 6, 2853–2855. (b) Donnelly, P. S.; Zanatta, S. D.; Zammit,
S. C.; White, J. M.; Williams, S. J. Chem. Commun. 2008, 21, 2459–
2461.
(1) (a) Kumar, G.; Neckers, D. C. Chem. Rev. 1989, 89, 1915–1937.
(b) Brown, D.; Natansohn, A.; Rochon, P. Macromolecules 1995, 28,
6116–6123. (c) Stephan, Z. Z.; Dietrich, H. Adv. Mater. 1998, 10, 855–
859. (d) Natansohn, A.; Rochon, P. Chem. Rev. 2002, 102, 4139–4175.
(e) Delaire, J. A.; Nakatani, K. Chem. Rev. 2000, 100, 1817–1845.
(f) Barrett, C. J.; Mamiya, J.; Yagerc, K. G.; Ikeda, T. Soft Matter
2007, 3, 1249–1261. (g) Zhao, Y.; He, J. Soft Matter 2009, 5, 2686–
2693.
(2) (a) Gibons, W. M.; Shannon, P. J.; Sun, S. T.; Swetlin, B. J. Nature
1991, 351, 49–50. (b) Pedersen, T. G.; Johansen, P. M.; Pedersen, H. C.
J. Opt. A: Pure Appl. Opt. 2000, 2, 272–278. (c) Hore, D.; Natansohn,
A.; Rochon, P. J. Phys. Chem. B 2003, 107, 2197–2204. (d) Hafiz,
H. R.; Nakanishi, F. Nanotechnology 2003, 14, 649–654. (e) Rasmussen,
P. H.; Ramanujam, P. S.; Hvilsted, S.; Berg, R. H. J. Am. Chem. Soc.
1999, 121, 4738–4743.
(3) (a) Ishow, E.; Lebon, B.; He, Y. N.; Wang, X. G.; Bouteiller, L.;
Galmiche, L.; Nakatani, K. Chem. Mater. 2006, 18, 1261–1267.