Journal of the American Chemical Society
Article
(12) Plots of ΔG⧧ vs temperature over a large temperature range
assume that ΔH⧧ and ΔS⧧ are constant over the entire temperature
range. Since the data in our Eyring plots were obtained over a small
temperature range of 20−30 °C, the obtained values of ΔH⧧ and ΔS⧧
are valid over the temperature range where the measurements were
made, and we assume that they offer a first approximation over the
larger range.
ACKNOWLEDGMENTS
■
We thank the National Science Foundation (CHE 0616352 and
1011788) and the Arkansas Biosciences Institute for direct
support of this work. T.P. thanks the NSF-REU Program for a
summer fellowship (CHE 0851505). Core facilities were
funded by the Arkansas Biosciences Institute and the National
Institutes of Health (P30 RR031154 and P30 GM103450). We
also thank Professors Donna Blackmond, Iain Coldham, David
Collum, and Jonathan Clayden for helpful discussions.
(13) Lee, W. K.; Park, Y. S.; Beak, P. Acc. Chem. Res. 2009, 42, 224−
234.
(14) (a) Low, E.; Gawley, R. E. J. Am. Chem. Soc. 2000, 122, 9562−
9563. (b) Gawley, R. E.; Klein, R.; Ashweek, N. J.; Coldham, I.
Tetrahedron 2005, 61, 3271−3280.
(15) Barker, G.; O’Brien, P.; Campos, K. R. ARKIVOC 2011, No. v,
217−229.
(16) Coldham, I.; Leonori, D.; Beng, T. K.; Gawley, R. E. Chem.
Commun. 2009, 5239−5240; Corrigendum with correct enthalpy and
entropy values: 2010, 9267−9268.
REFERENCES
■
(1) (a) Clayden, J. Organolithiums: Selectivity for Synthesis; Pergamon
Press: London, 2002. (b) Organolithiums in Enantioselective Synthesis;
Hodgson, D. M., Ed.; Springer: Berlin, 2003; Vol. 5. (c) The Chemistry
of Organolithium Compounds; Rappoport, Z., Marek, I., Eds.; Wiley:
Chichester, 2004. (d) Organometallics: Compounds of Group 1 (Li ...
Cs); Majewski, M., Snieckus, V., Eds.; Thieme: Stuttgart, 2006; Vol. 8a.
(e) Stereochemical Aspects of Organolithium Compounds; Gawley, R. E.,
Ed.; Topics in Stereochemistry, Vol. 26; Wiley-VCH: Weinheim,
Germany, 2010.
(17) (a) Beng, T. K.; Gawley, R. E. J. Am. Chem. Soc. 2010, 132,
12216−12217. (b) Beng, T. K.; Gawley, R. E. Org. Lett. 2011, 13,
394−397. (c) Beng, T. K.; Gawley, R. E. Heterocycles 2012, 84, 697−
718.
̈
(18) Reich, H. J.; Sikorski, W. H.; Gudmundsson, B. O.; Dykstra, R.
R. J. Am. Chem. Soc. 1998, 120, 4035−4036.
(19) In the catalytic resolution of 2 by 4, the achiral ligand required is
bispidine 3 (see ref 9).
(2) (a) Hoppe, D.; Hense, T. Angew. Chem., Int. Ed. Engl. 1997, 36,
2283−2316. (b) Hoppe, D.; Christoph, G. In The Chemistry of
Organolithium Compounds; Rappoport, Z., Marek, I., Eds.; Wiley:
Chichester, 2004; pp 1055−1164. (c) Beak, P.; Johnson, T. A.; Kim,
D. D.; Lim, S. H. Top. Organomet. Chem 2003, 5, 139−176.
(d) Kizirian, J.-C. Top. Stereochem. 2010, 26, 189−251. (e) Mitchell,
E. A.; Peschiulli, A.; Lefevre, N.; Meerpoel, L.; Maes, B. U. W.
Chem.Eur. J. 2012, 18, 10092−10142.
(3) (a) Bailey, W. F.; Beak, P.; Kerrick, S. T.; Ma, S.; Wiberg, K. B. J.
Am. Chem. Soc. 2002, 124, 1889−1896. (b) Coldham, I.; O’Brien, P.;
Patel, J. J.; Raimbault, S.; Sanderson, A. J.; Stead, D.; Whittaker, D. T.
E. Tetrahedron: Asymmetry 2007, 18, 2113−2119. (c) Metallinos, C.;
Dudding, T.; Zaifman, J.; Chaytor, J. L.; Taylor, N. J. J. Org. Chem.
2007, 72, 957−963.
(4) (a) Stead, D.; Carbone, G.; O’Brien, P.; Campos, K. R.; Coldham,
I.; Sanderson, A. J. Am. Chem. Soc. 2010, 132, 7260−7261. (b) Dixon,
A. J.; McGrath, M. J.; O’Brien, P. In Organic Syntheses; Wiley: New
York, 2009; Collect. Vol. 11, pp 25−37.
(5) (a) Beak, P.; Anderson, D. R.; Curtis, M. D.; Laumer, J. M.;
Pippel, D. J.; Weisenburger, G. A. Acc. Chem. Res. 2000, 33, 715−727.
(b) Coldham, I.; Dufour, S.; Haxell, T. F. N.; Howard, S.; Vennall, G.
P. Angew. Chem., Int. Ed. 2002, 41, 3887−3889. (c) Coldham, I.;
Dufour, S.; Haxell, T. F. N.; Vennall, G. P. Tetrahedron 2005, 61,
3205−3220. (d) Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P.
Angew. Chem., Int. Ed. 2004, 43, 2206−2225. (e) Coldham, I.; Dufour,
S.; Haxell, T. F. N.; Patel, J. J.; Sanchez-Jimenez, G. J. Am. Chem. Soc.
2006, 128, 10943−10951. (f) Coldham, I.; Raimbault, S.; Chovatia, P.
T.; Patel, J. J.; Leonori, D.; Sheikh, N. S.; Whittaker, D. T. E. Chem.
Commun. 2008, 4174−4176. (g) Coldham, I.; Sheikh, N. S. Top.
Stereochem. 2010, 26, 253−293. (h) Coldham, I.; Raimbault, S.;
Whittaker, D. T. E.; Chovatia, P. T.; Leonori, D.; Patel, J. J.; Sheikh, N.
S. Chem.Eur. J. 2010, 16, 4082−4090.
(6) (a) Nakamura, S.; Hirata, N.; Kita, T.; Yamada, R.; Nakane, D.;
Shibata, N.; Toru, T. Angew. Chem., Int. Ed. 2007, 46, 7648−7650.
(b) Nakamura, S.; Hirata, N.; Yamada, R.; Kita, T.; Shibata, N.; Toru,
T. Chem.Eur. J. 2008, 14, 5519−5527.
(7) Bispidine 3 was first used as an exchangeable achiral ligand in
catalytic deprotonations. See: McGrath, M. J.; O’Brien, P. J. Am. Chem.
Soc. 2005, 127, 16378−16379.
(8) If retentive substitution is assumed, this implies accumulation of
the R organolithium.
(9) Beng, T. K.; Yousaf, T. I.; Coldham, I.; Gawley, R. E. J. Am. Chem.
Soc. 2009, 131, 6908−6909.
(10) Tin−lithium exchange was used to generate 2 from 1, a process
that fails in the absence of a diamine ligand.
(11) In all cases, the best fits of the kinetic data were to reversible
first-order plots.
16855
dx.doi.org/10.1021/ja307796e | J. Am. Chem. Soc. 2012, 134, 16845−16855