Synthesis of a Novel Heterocyclic System
Letters in Organic Chemistry, 2009, Vol. 6, No. 7
527
7
6
R
4
R
5
8
CHO
Cl
3
N
N
C6H6, K2CO3
r.t., 24h
S
+
9
N
10
N
1
SMe
2
N
S
MeS
N
11
H
3a,b
2a,b
1
R = Cl (a); OMe (b)
Scheme 1.
Nu
Cl
N
N
NuH
N
r.t., K2CO3
(45-80%)
N
S
N
SMe
S
N
SMe
3b-h
3a
Nu = OMe (b), OEt (c), NH2 (d), NHPh (e), N(CH2)4O (f), NHCH2CO2Me (g), SCH2CO2Et (h)
Scheme 2.
[8]
(a) Brukstus, A.; Melamedaite, D.; Tumkevicius, S. Synth.
Commun., 2000, 30, 3719; (b) Tumkevicius, S.; Dailide, M.;
Kaminskas, A. J. Heterocycl. Chem., 2006, 43, 1629; (c)
Tumkevicius, S.; Dailide, M. J. Heterocycl. Chem., 2005, 42, 1305;
(d) Tumkevicius, S.; Masevicius, V. Synlett, 2004, 2327.
Santilli, A. A.; Kim, D. H.; Wanser, S. V. J. Heterocycl. Chem.,
1971, 8, 445.
morpholine, methyl aminoacetate or ethyl mercaptoacetate in
tetrahydrofuran in the presence of potassium carbonate
furnished the corresponding 4-substituted 2-methyl-
thiopyrimido[5ꢀ,4ꢀ:5,6]thiopyrano[2,3-b]indoles (3d-h) in 45-
80% yields.
[9]
In summary, we have developed a simple and efficient
synthesis of a novel tetracyclic heterocyclic system -
pyrimido[5ꢀ,4ꢀ:5,6]thiopyrano[2,3-b]indoles, containing str-
uctural units of indole, thiopyrane and pyrimidine, that
makes these compounds readily available for further
chemical and biological study.
[10]
Synthetic procedure for 4-chloro-2-methylthiopyrimido[5ꢀ,4ꢀ:5,
6]thiopyrano[2,3-b]indole (3a). A solution of 0.15 g (1 mmol) 1,3-
dihydro-indole-2-thione in 10 ml of dry benzene was flushed with
argon. Then 0.22 g (1 mmol) 4,6-dichloro-2-methylthiopyrimidine-
5-carbaldehyde [9] and 0.15 g (1.1 mmol) of potassium carbonate
was added. The reaction mixture was stirred at room temperature
for 24 h and filtered. Filtrate was concentrated under reduced
pressure to dryness and the resulting solid was recrystallized to
give 0.21 g (66%) of compound 3a as orange red needle crystals,
m.p. 183 ºC (dec.) (from chloroform). 1H-NMR (300 MHz, CDCl3)
ꢁ, ppm: 2.72 (s, 3H, SCH3), 7.43 (td, 1H, J = 7.3 Hz, J = 1.0 Hz,
C7-H), 7.63 (td, 1H, J = 8.0 Hz, J = 1.0 Hz, C8-H), 7.79 (d, 1H, J =
8.0 Hz, C9-H), 8.09 (d, 1H, J = 7.1 Hz, C6-H) 8.62 (s, 1H, C5-H).
13C-NMR (75 MHz, DMSO-d6) ꢁ, ppm: 14.7, 115.3, 119.2, 121.6,
123.9, 124.1, 125.5, 130.6, 132.2, 154.9, 160.4, 160.7, 165.0,
171.9. Anal. Calcd. for C15H8N3S2Cl: C, 52.91; H, 2.54; N, 13,22.
Found: C, 53.29; H, 2.49; N, 13.04.
REFERENCES AND NOTES
[1]
(a) Sundberg, R. J. Indoles; Academic Press: London, 1996; (b)
Sundberg, R. J. In Comprehensive Heterocyclic Chemistry II;
Katritzky, A. R.; Ress, C. W.; Scriven, E. F. V.; Bird, C. W.; Eds.;
Pergamon Press: Oxford, 1996; Vol. 2, p. 119; (c) Gribble, G. W.
Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Ress,
C. W.; Scriven, E. F. V.; Bird, C. W., Eds.; Pergamon Press:
Oxford, 1996; Vol. 2, p. 207.
[11]
Spectral and physical data of compounds 3b-h. Compound 3b:
Yield 63%, m.p. 220-222 ºC (form ethyl acetate). IR, cm-1: 1549,
1502, 1427. 1H-NMR (300 MHz, CDCl3) ꢁ, ppm.: 2.67 (s, 3H,
SCH3), 4.23 (s, 3H, OCH3) 7.36 (td, 1H, J = 7.5 Hz, J = 0.9 Hz,
C7-H), 7.56 (td, 1H, J = 7.7 Hz, J = 1.0 Hz, C8-H), 7.76 (d, 1H, J =
7.8 Hz, C9-H), 8.01 (d, 1H, J = 7.5 Hz, C6-H) 8.55 (s, 1H, C5-H).
13C-NMR (75 MHz, DMSO-d6) ꢁ, ppm: 14.7, 55.4, 106.4, 119.1,
121.0, 123.4, 123.5, 125.9, 129.8, 130.0, 154.9, 161.1, 164.0,
[2]
[3]
(a) Humphrey, G. R.; Kuethe, J. T. Chem. Rev., 2006, 106, 2875;
(b) Cacchi, S.; Fabrizi, G. Chem. Rev., 2005, 105, 2873; (c)
Gribble, G. W. J. Chem. Soc. Perkin Trans. I, 2000, 1045.
(a) Pedras, M. S. C.; Jha, M. J. Org. Chem., 2005, 70, 1828; (b)
Pedras, M. S. C.; Zaharia, I. L. Org. Lett., 2001, 3, 1213; (c)
Pedras, M. S. C.; Okanga, F. I. J. Agric. Food Chem., 1999, 47,
1196; (d) Pedras, M. S. C.; Khan, A. Q. J. Agric. Food Chem.,
1996, 44, 3403.
o
165.7, 172.3. Compound 3c: Yield 73%, m.p. 226.5-227 C (from
ethyl acetate): 1H-NMR (300 MHz, CDCl3) ꢁ, ppm: 1.60 (t, 3H, J =
7.1 Hz, CH3), 2.68 (s, 3H, SCH3), 4.71 (q, 2H, J = 7.1 Hz, OCH2)
7.38 (t, 1H, J = 7.5 Hz, C7-H), 7.59 (t, 1H, J = 7.9 Hz, C8-H), 7.79
(d, 1H, J = 7.9 Hz, C9-H), 8.08 (d, 1H, J = 7.5 Hz, C6-H), 8.61 (s,
1H, C5-H). 13C-NMR (75 MHz, CDCl3) ꢁ, ppm: 14.6, 14.7, 64.6,
106.4, 119.3, 121.4, 123.3, 123.5, 126.4, 129.7, 130.3, 155.3,
161.6, 164.4, 165.5, 172.2. Compound 3d: Yield 80%, m.p. 320 oC
(dec.): IR, cm-1: 3322, 3160 (NH). 1H-NMR (300 MHz, DMSO-d6)
ꢁ, ppm: 2.54 (s, 3H, SCH3), 7.36 (t, 1H, J = 7.5 Hz, C7-H), 7.51 (t,
1H, J = 7.8 Hz, C8-H), 7.66 (d, 1H, J = 7.8 Hz, C9-H), 8.01 (d, 1H,
J = 7.5 Hz, C6-H), 8.01 (s, 2H, NH2), 9.09 (s, 1H, C5-H). 13C-NMR
(75 MHz, DMSO-d6) ꢁ, ppm: 14.3, 103.3, 119.0, 121.2, 123.4,
126.8, 126.9, 127.8, 129.2, 154.6, 160.1, 161.7, 163.6, 171.8.
Compound 3e: Yield 64%, m.p. 141-142 oC (from chloroform): IR,
cm-1: 3436 (NH). 1H-NMR (300 MHz, DMSO-d6) ꢁ, ppm: 2.50 (s,
3H, SCH3), 7.25 (t, 1H, J = 7.4 Hz, C4ꢀ-H), 7.43 (t, 1H, J = 7.4 Hz,
[4]
(a) Olgen, S.; Akaho, E.; Nebioglu, D. Farmaco, 2005, 60, 497; (b)
Olgen, S. Arch. Pharm. Res., 2006, 29, 1006; (c) Olgen, S.; Gotz,
C.; Jose, J. Biol. Pharm. Bull., 2007, 30, 715; (d) Rewcastle, G. W.;
Palmer, B. D.; Dobrusin, E. M.; Fry, D. W.; Kraker, A. J.; Denny,
W. A. J. Med. Chem., 1994, 37, 2033. (e) Palmer, B. D.;
Rewcastle, G. W.; Thompson, A. M.; Boyd, M.; Showalter, H. D.
H.; Sercel, A. D.; Fry, D. W.; Kraker, A. J.; Denny, W. A. J. Med.
Chem., 1995, 38, 58.
Fensome, A.; Koko, M.; Wrobel, J.; Zhang, P.; Zhang, Z.; Cohen,
J.; Lundeen, S.; Rudnick, K.; Zhu, Y.; Winneker, R. Bioorg. Med.
Chem. Lett., 2003, 13, 1317.
Moghaddam, F. M.; Saeidian, H.; Mirjafary, Z.; Taheri, S.;
Kheirjou, S. Synlett, 2009, 1047.
[5]
[6]
[7]
(a) Thompson, A. M.; Boyd, M.; Denny, W. A. J. Chem. Soc.
Perkin Trans. 1, 1993, 1835; (b) Kamila, S.; Biehl, E.
Heterocycles, 2004, 63, 2785.