746
K.-J. Chen et al. / Inorganic Chemistry Communications 12 (2009) 744–746
Table 1
Luminescence data for compounds 1–4 at 298 K.
Compound
1
Medium
kabs/nm (
e
/Mꢁ1 cmꢁ1
)
kem/nm (sem/l
s)a at 298 K
Solid
CH2Cl2
Solid
CH2Cl2
Solid
CH2Cl2
Solid
746 (0.34)
584 (0.28)
282 (8200), 305 (8700), 388 (2400), 453 (1600)
298 (23,600), 370 (9000), 382 (8300), 445 (5200)
298 (23,600), 370 (8700), 382 (8300), 445 (5000)
295 (26,500), 370 (10,000), 382 (9600), 445 (5800)
2
3
4
1061 (weak)
1061 (weak)
613 (449.9)
613 (172.7)
980 (12.4)
980 (13)
CH2Cl2
a
In degassed dichloromethane at 298 K.
Appendix A. Supplementary material
CCDC 729706 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
References
[1] J.-C.G. Bünzli, S. Comby, A.-S. Chauvin, C.D.B. Vandevyver, J. Rare Earth 25
(2007) 257.
[2] (a) T. Gunnlaugsson, F. Stomeo, Org. Biomol. Chem. 5 (2007) 1999;
(b) E.J. Werner, A. Datta, C.J. Jocher, K.N. Raymond, Angew. Chem. Int. Ed. 47
(2008) 2;
500
625
1000
λ (nm)
1200
1400
(c) S. Faulkner, S.J.A. Pope, B.P. Burton-Pye, Appl. Spectr. Rev. 40 (2005) 1.
[3] (a) Y. Hasegawa, Y. Wada, S. Yanagida, J. Photochem. Photobiol. C: Photochem.
Rev. 5 (2004) 183;
Fig. 3. Emission spectra of 1 (short dot), 2 (dash dot), 3 (short dash) and 4 (solid)
with kex = 400 nm in dichloromethane solutions at 298 K.
(b) K. Kuriki, Y.K. Okamoto, Chem. Rev. 102 (2002) 2347.
[4] S.I. Klink, H. Keizer, F.C.J.M. van Veggle, Angew. Chem. Int. Ed. 39 (2000) 4319.
[5] M.D. Ward, Coord. Chem. Rev. 251 (2007) 1663.
[6] D. Imbert, M. Cantuel, J.-C.G. Bünzli, G. Bernardinelli, C. Piguet, J. Am. Chem.
Soc. 125 (2003) 15698.
[7] P. Coppo, M. Duati, V.N. Kozhevnikov, J.W. Hofstraat, L.D. Cola, Angew. Chem.
Int. Ed. 44 (2005) 1806.
[8] Z.N. Chen, Y. Fan, J. Ni, Dalton Trans. (2008) 573.
[9] (a) H.B. Xu, L.X. Shi, E. Ma, L.Y. Zhang, Q.H. Wei, Z.N. Chen, Chem. Commun.
(2006) 1601;
(b) H.B. Xu, L.Y. Zhang, Z.L. Xie, E. Ma, Z.N. Chen, Chem. Commun. (2007) 2744.
[10] D. Guo, C.-Y. Duan, F. Lu, Y. Hasegawa, Q.-J. Meng, S. Yanagida, Chem. Commun.
(2004) 1486.
[11] N.M. Shavaleev, S.J.A. Pope, Z.R. Bell, S. Faulkner, M.D. Ward, Dalton Trans.
(2003) 808.
[12] (a) M. Mehlstäubl, G.S. Kottas, S. Colella, L. De Cola, Dalton Trans. (2008) 2385;
(b) G.S. Kottas, M. Mehlstäubl, R. Fröhlich, L. De Cola, Eur. J. Inorg. Chem.
(2007) 3465.
[13] S.C.F. Kui, I.H.T. Sham, C.C.C. Cheung, C.-W. Ma, B. Yan, N. Zhu, C.-M. Che, W.-F.
Fu, Chem. Eur. J. 13 (2007) 417.
which tend to be convoluted with the MLCT emissions to a signif-
icant degree, causing better spectroscopic overlapping with the Pt-
based 3MLCT emission band (584 nm). For YbIII ion, a single f–f
absorption at ca. 980 nm (10,240 cmꢁ1) can only overlap with
the very weak low-energy tail of the PtII-based emission. Undoubt-
edly, energy matching degree for Pt ? Ln energy transfer is Pt–Nd
(2) > Pt–Yb (4) [15d,16], resulting in a faster transfer rate for the
former than the latter.
In summary, designed preparation of three Pt–Ln heterobinu-
clear complexes have been carried out using C^N^N tridentate
cyclometalated ligand. Sensitization of NIR lanthanide lumines-
*
cence by the d(Pt) ?
p (C^N^N)[MLCT] excited triplet state is suc-
cessfully achieved through efficient Pt ? Ln energy transfer from
the Pt-based chromophore to the lanthanide center. It is demon-
strated that Pt ? Ln energy transfer in Pt–Nd complex 2 is more ra-
pid than that in Pt–Yb species 4 because of the more favorable
energy match for the former.
[14] (a) X.-L. Li, F.-R. Dai, L.-Y. Zhang, Y.-M. Zhu, Q. Peng, Z.-N. Chen,
Organometallics 26 (2007) 4483;
(b) X.-L. Li, L.-X. Shi, L.-Y. Zhang, H.-M. Wen, Z.-N. Chen, Inorg. Chem. 46
(2007) 10892;
(c) J. Ni, L.-Y. Zhang, Z.-N. Chen, J. Organomet. Chem. 694 (2009) 339.
[15] (a) H.-B. Xu, J. Ni, K.-J. Chen, L.-Y. Zhang, Z.-N. Chen, Organometallics 27
(2008) 5665;
(b) H.-B. Xu, L.-Y. Zhang, L.-X. Shi, E. Ma, H.-Y. Chao, Z.-N. Chen, Inorg. Chem.
47 (2008) 10744;
(c) H.-B. Xu, L.-Y. Zhang, Z.-H. Chen, L.-X. Shi, Z.-N. Chen, Dalton Trans. (2008)
4664;
Acknowledgments
(d) H.-B. Xu, X.-M. Chen, X.-L. Li, L.-Y. Zhang, Z.-N. Chen, Cryst. Growth Des. 9
(2009) 569.
[16] T.K. Ronson, T. Lazarides, H. Adams, S.J.A. Pope, D. Sykes, S. Faulkner, S.J. Coles,
M.B. Hursthouse, W. Clegg, R.W. Harrington, M.D. Ward, Chem. Eur. J. 12
(2006) 9299.
This work was financially supported by the NSFC (20625101,
20773128 and 20821061), the 973 Project (2007CB815304)
from MSTC, and NSF of Fujian Province (2008I0027 and
2008F3117).