ORGANIC
LETTERS
2010
Vol. 12, No. 7
1552-1555
An Expedient Procedure for the
Oxidative Cleavage of Olefinic Bonds
with PhI(OAc)2, NMO, and Catalytic
OsO4
K. C. Nicolaou,* Vikrant A. Adsool, and Christopher R. H. Hale
Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and
the Department of Chemistry and Biochemistry, UniVersity of California, San Diego,
9500 Gilman DriVe, La Jolla, California 92093
Received February 3, 2010
ABSTRACT
PhI(OAc)2 in the presence of OsO4 (cat.) and 2,6-lutidine cleaves olefinic bonds to yield the corresponding carbonyl compounds, albeit, in
some cases, with r-hydroxy ketones as byproduct. A more practical and clean protocol to effect oxidative cleavage of olefinic bonds involves
NMO, OsO4 (cat.), 2,6-lutidine, and PhI(OAc)2.
The oxidative cleavage of olefinic bonds, either through their
ozonides or diols, is used widely in organic synthesis as a
useful method to truncate carbon chains or, more usefully,
to prepare carbonyl compounds. The most common methods
employed to carry out these operations involve ozonolysis
(Scheme 1a) or Johnson-Lemieux oxidation1 [NaIO4, OsO4
(cat.)] and its variants2 (Scheme 1b), including the recent
improvement (addition of 2,6-lutidine) introduced by Jin et
al.,3 all of which are one-step procedures. The disadvantages
involved with these methods (e.g., safety,4 drastic or
inconvenient conditions) led to the introduction of the two-
step procedure employing sequential Upjohn dihydroxyla-
tion5 [NMO, OsO4 (cat.)] and periodate cleavage of the
resulting 1,2-diol (Scheme 1c), which became as popular, if
not more, than the first two methods. More recent attempts
to improve upon these protocols led to the procedures of
Borhan et al.6 [oxone, OsO4 (cat.)] and Ochiai et al.7
[m-CPBA, HBF4, ArI (cat.)] that oxidatively cleave olefinic
bonds. The use of strong conditions, and the fact that both
(1) Pappo, R.; Allen, D. S., Jr.; Lemieux, R. U.; Johnson, W. S. J. Org.
Chem. 1956, 21, 478–479.
(2) (a) Okumoto, H.; Ohtsuko, K.; Banjoya, S. Synlett 2007, 3201–3205.
(b) Brooks, C. D.; Huang, L. C.; McCarron, M.; Johnstone, R. A. W. Chem.
Commun. 1999, 37–38. (c) Antonelli, E.; D’Aloisio, R.; Gambaro, M.;
Fiorani, T.; Venturello, C. J. Org. Chem. 1998, 63, 7190–7206. (d) Sato,
K.; Aoki, M.; Noyori, R. Science 1998, 281, 1646–1647. (e) Henry, J. R.;
Weinreb, S. M. J. Org. Chem. 1993, 58, 4745. (f) Ishii, Y.; Yamawaki, K.;
Ura, T.; Yamada, H.; Yoshida, T.; Ogawa, M. J. Org. Chem. 1988, 53,
3587–3593. (g) Lee, D. G.; Chang, V. S. J. Org. Chem. 1978, 43, 1532–
1536.
(3) Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6, 3217–
3219.
(4) (a) Dorofeev, S. B.; Eletskii, A. V.; Smirnov, B. M. Dokl. Akad.
Nauk SSSR 1981, 257, 592-596. (b) Koike, K.; Inoue, G.; Fukuda, T.
J. Chem. Eng. Jpn. 1999, 32, 295–299. (c) Ogle, R. A.; Schumacher, J. L.
Process Saf. Prog. 1998, 17, 127–133.
(5) VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976,
23, 1973–1976.
10.1021/ol100290a 2010 American Chemical Society
Published on Web 02/25/2010