C O M M U N I C A T I O N S
Figure 2. Left panel: Screening of 1, 5-8 (5 µM) against pure mNat2
(dark blue columns), hNAT1 in Escherichia coli cell lysate (blue columns),
and hNAT1 in breast cancer cell lysate (ZR-75-1 cells, 1 and 7 only, light
blue columns). NAT activity was determined as acetylation of pABA in
the presence of AcCoA. Right panel: Compounds 1, 5-8 (2 mM) in
Tris·HCl buffer (pH 8.0, top) or aq. NaOH (bottom).
Figure 4. Assessment of the number of binding sites and Kd value for 7
with mNat2 by Michaelis-Menten curve (left) and Scatchard plot (right).
In summary, we have identified a family of reagents which bind
selectively to human NAT1 and its murine homologue mouse Nat2
with a concomitant color change driven by a proton transfer event.
As the expression of hNAT1 is related to tumor type, this property
may be subsequently exploited for diagnosis.
Table 2. Color Change of 1, 5-8 (10 µM) with aq. NaOH or
mNat2
Compound
1
5
6
7
8
Acknowledgment. We thank Research Councils UK for a
fellowship (A.J.R.), Cancer Research UK for a studentship (N.L.),
and Siu Po Lee for mNat2 purification.
λmax (nm) in buffer
∆λmax with NaOH (nm)
∆λmax with mNat2 (nm)
489
+72
+121
487
+49
+123
484
0
0
498
+74
+127
490
+69
+125
Supporting Information Available: All experimental procedures;
compound characterization data; complete ref 6a. This material is
As an alternative explanation, the susceptibility of the naphtho-
quinone function toward reduction led us to investigate whether
any reducing agents may give rise to the color change of 7,
especially DTT which is present in the recombinant protein solution
at 34 µM. Treatment of 7 with DTT at 34 µM gave no reduction
and did not affect its color, but at high concentration (100 mM)
DTT led to a decolorization of a solution of 7, which was reversed
upon exposure to air.15 Other reducing agents such as NAD(P)H
gave no visible change, and only treatment with base gave the
characteristic red shift in the visible spectrum of 7.
To assess specificity more broadly, 7 was tested for inhibitory
activity and colorimetric properties with a range of other mammalian
and bacterial NAT enzymes (Table 3). Although partial crossre-
activity was observed with mNat1, the color change was only
observed with mNat2 and hNAT1 (Figure 3).
References
(1) For a review, see: Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.;
Tsien, R. Y. Science 2006, 312, 217.
(2) For recent reviews, see: (a) Cravatt, B. F.; Wright, A. T.; Kozarich, J. W.
Annu. ReV. Biochem. 2008, 77, 383. (b) Soh, N. Sensors 2008, 8, 1004.
(3) For selected recent examples, see: (a) Wright, A. T.; Song, J. D.; Cravatt,
B. F. J. Am. Chem. Soc. 2009, 131, 10692. (b) Verdoes, M.; Florea, B. I.;
van der Marel, G. A.; Overkleeft, H. S. Eur. J. Org. Chem. 2009, 20, 3301.
(c) Richard, J.-A.; Jean, L.; Schenkels, C.; Massonneau, M.; Romieu, A.;
Renard, P.-Y. Org. Biomol. Chem. 2009, 7, 2941. (d) Zou, Y.; Yin, J. J. Am.
Chem. Soc. 2009, 131, 7548. (e) Tsukiji, S.; Wang, H.; Miyagawa, M.;
Tamura, T.; Takaoka, Y.; Hamachi, I. J. Am. Chem. Soc. 2009, 131, 9046.
(4) For selected recent examples, see: (a) Gallagher, S. S.; Sable, J. E.; Sheetz,
M. P.; Cornish, V. W. ACS Chem. Biol. 2009, 4, 547. (b) Hasegawa, Y.;
Honda, A.; Umezawa, K.; Niino, Y.; Oka, K.; Chiba, T.; Aiso, S.; Tanimoto,
A.; Citterioa, D.; Suzuki, K. Chem. Commun. 2009, 4040. (c) Kamoto,
M.; Umezawa, N.; Kato, N.; Higuchi, T. Bioorg. Med. Chem. Lett. 2009,
19, 2285. (d) Halo, T. L.; Appelbaum, J.; Hobert, E. M.; Balkin, D. M.;
Schepartz, A. J. Am. Chem. Soc. 2009, 131, 438.
Table 3. Effect of 7 (10 µM) on the Activity of Different NATs,
Determined As Hydrolysis of AcCoA in the Presence of
5-Aminosalicylate, and λmax Determined from the Visible Spectra of
7 in the Presence of Different NATs (See Supporting Information)
(5) (a) Weber, W. W.; Hein, D. W. Pharmacol. ReV. 1985, 37, 25. (b) Wu, H.;
Dombrovsky, L.; Tempel, W.; Martin, F.; Loppnau, P.; Goodfellow, G. H.;
Grant, D. M.; Plotnikov, A. N. J. Biol. Chem. 2007, 282, 30189. (c) Wang,
H.; Liu, L.; Hanna, P. E.; Wagner, C. R. Biochemistry 2005, 44, 11295.
(6) (a) Adam, P. J.; et al. Mol. Cancer Res. 2003, 1, 826. (b) Butcher, N. J.;
Tetlow, N. L.; Cheung, C.; Broadhurst, G. M.; Minchin, R. F. Cancer Res.
2007, 67, 85.
(7) (a) Sim, E.; Westwood, I.; Fullam, E. Expert Opin. Drug Metab. Toxicol.
2007, 3, 169. (b) Smelt, V. A; Upton, A.; Adjaye1, J.; Payton, M. A.;
Boukouvala, S.; Johnson, N.; Mardon, H. J.; Sim, E. Hum. Mol. Genet.
2000, 9, 1101.
(8) (a) Tozlu, S.; Girault, I.; Vacher, S.; Vendrell, J.; Andrieu, C.; Spyratos,
F.; Cohen, P.; Lidereau, R.; Bieche, I. Endocr. Relat. Cancer 2006, 13,
1109. (b) Sim, E.; Walters, K.; Boukouvala, S. Drug Metab. ReV. 2008,
40, 479. (c) Wakefield, L.; Robinson, J.; Long, H.; Ibbitt, J. C.; Cooke, S.;
Hurst, H. C.; Sim, E. Genes Chromosomes Cancer 2008, 47, 118.
(9) (a) Minchin, R. F.; Hanna, P. E.; Dupret, J.-M.; Wagner, C. R.; Rodrigues-
Lima, F.; Butcher, N. J. Int. J. Biochem. Cell Biol. 2007, 39, 1999. (b)
Kawamura, A.; Westwood, I.; Wakefield, L.; Long, H.; Zhang, N.; Walters,
K.; Redfield, C.; Sim, E. Biochem. Pharmacol. 2008, 75, 1550.
(10) Russell, A. J.; Westwood, I. M.; Crawford, M. C.; Robinson, J.; Kawamura,
A.; Redfield, C.; Lowe, E. D.; Laurieri, N.; Davies, S. G.; Sim, E. Bioorg.
Med. Chem. 2009, 17, 905.
(11) (a) Westwood, I. M.; Kawamura, A.; Fullam, E.; Russell, A. J.; Davies,
medschool/pharmacology/NAT.html.
(12) It was presumed that the sulfonamide NH was undergoing proton exchange
in all cases; for a related example, see: Wu, S.-P.; Huang, R.-Y.; Du, K.-J.
Dalton Trans. 2009, 4735.
Figure 3. Visible spectra of 7 (10 µM) with different NATs (20 µM).
Having confirmed the specificity of 7 for mNat2, the colorimetric
properties of 7 were used to assess the dissociation constant (Kd)
and the number of binding sites. The molar extinction coefficients
(ε) at 514 nm of the red and blue species were determined to be
14 336 and 7215 M-1 cm-1, respectively. The optical density of
varying concentrations of 7 with mNat2 at 514 nm allowed an
estimate of the concentration of free 7. Michaelis-Menten and
Scatchard analysis supported a single binding site and gave a Kd
value of 4.9 µM (Figure 4).
(13) The change in λmax was found to differ in the presence of mNat2 compared
to aq. NaOH, consistent with the molecules being subjected to a different
microenvironment through binding to the NAT enzyme.
(14) For a related example, see: Kim, Y.-S.; Park, S.-Y.; Lee, H.-J.; Suh, M.-
E.; Schollmeyer, D.; Lee, C.-O. Bioorg. Med. Chem. 2003, 11, 1709.
(15) Hoover, J. R. E.; Day, A. R. J. Am. Chem. Soc. 1954, 76, 4148.
JA909165U
9
J. AM. CHEM. SOC. VOL. 132, NO. 10, 2010 3239