K. Chinnam Naidu et al. / Tetrahedron Letters 51 (2010) 1226–1229
1229
9. Friestad, G. K.; Draghici, C.; Soukri, M.; Qin, J. J. Org. Chem. 2005, 70, 6330.
10. Timmons, C.; Guo, L.; Liu, J.; Cannon, J. F.; Li, G. J. Org. Chem. 2005, 70, 7634.
11. Hein, J. E.; Zimmerman, J.; Sibi, M. P.; Hultin, P. G. Org. Lett. 2005, 7, 2755.
12. (a) Gregory, W. A.; Brittelli, D. R.; Wang, C. L. J.; Wuonola, M. A.; McRipley, R. J.;
Eustice, D. C.; Eberly, V. S.; Bartholomew, P. T.; Slee, A. M.; Forbes, M. J. Med.
Chem. 1989, 32, 1673; (b) Gordeev, M. F. Curr. Opin. Drug Discov. Devel. 2001, 4,
450; (c) Slee, A. M.; Wuonola, M. A.; McRipley, R. J.; Zajac, I.; Zawada, M. J.;
Bartholomew, P. T.; Gregory, W. A.; Forbes, M. Antimicrob. Agents Chemother.
1987, 31, 1791; (d) Bolmstrom, A.; Ballow, C. H.; Qwarnstrom, A.; Biedenbach,
D. J.; Jones, R. N. Clin. Microbiol. Infect. 2002, 8, 791; (e) Barbachyn, M. R.; Ford,
C. W. Angew. Chem., Int. Ed. 2003, 42, 2010; (f) Wang, G.; Hollingsworth, R. I.
Tetrahedron: Asymmetry 2000, 11, 4429; (g) Barbachyn, M. R.; Toops, D. S.;
Grega, K. C.; Hendges, S. K.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R.
D.; Stapert, D.; Yagi, B. H.; Buysse, J. M.; Demyan, W. F.; Kilburn, J. O.; Glickman,
S. E. Bioorg. Med. Chem. Lett. 1996, 6, 1009.
13. (a) Genin, M. J.; Hutchinson, D. K.; Allwine, D. A.; Hester, J. B.; Emmert, D. E.;
Garmon, S. A.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert,
D.; Yagi, B. H.; Friis, J. M.; Shobe, E. M.; Adams, W. J. J. Med. Chem. 1998, 41,
5144; (b) Brickner, S. J. Curr. Pharm. Des. 1996, 2, 175;.
14. (a) Madhusudhan, G.; Om Reddy, G.; Rajesh, T.; Ramanatham, J.; Dubey, P. K.
Tetrahedron Lett. 2008, 49, 3060; (b) Benedetti, F.; Norbedo, S. Tetrahedron Lett.
2000, 41, 10071; (c) Lago, M. A.; Samanen, J.; Elliott, J. D. J. Org. Chem. 1992, 57,
3493; (d) Newman, M. S.; Kutner, A. J. J. Am. Chem. Soc. 1951, 73, 4199; (e)
Bonner, M. P.; Thornton, E. R. J. Am. Chem. Soc. 1991, 113, 1299; (f) Efskind, J.;
Romming, C.; Undheim, K. J. Chem. Soc., Perkin Trans. 1 1999, 1677; (g) Diaz, P.
V. M.; Moreno, M. I. G.; Mellet, C. O.; Fuentes, J.; Arribas, J. C. D.; Canada, F. V.;
Fernandez, J. M. G. J. Org. Chem. 2000, 65, 136;.
17. Elenkov, M. M.; Tang, L.; Meetsma, A.; Hauer, B.; Janssen, B. D. Org. Lett. 2008,
10, 2417.
18. (a) Shah, S. K.; Dorn, C. P., Jr.; Finke, P. E.; Hale, J. J.; Hagmann, W. K.; Brause, K.
A.; Chandler, G. O.; Kissinger, A. L.; Ashe, B. M.; Weston, H.; Knight, W. B.;
Maycock, A. L.; Dellea, P. S.; Fletcher, D. S.; Hand, K. M.; Mumford, R. A.;
Underwood, D. J.; Doherty, J. B. J. Med. Chem. 1992, 35, 3745; (b) Ozaki, S. Chem.
Rev. 1972, 72, 457.
19. Piper, J. R.; Rose, L. M.; Johnston, T. P.; Grenan, M. M. J. Med. Chem. 1979, 22,
631.
20. (a) The halohydrins (1, 4, 6, 8, 10, 12) were prepared by treating
epichlorohydrin with corresponding amine in isopropanol, without usage of
any base. The halohydrins (14 and 16) were prepared by
a-bromination of
corresponding acetophenone with NBS followed by reduction of ketogroup
yielded appropriate halohydrin.; (b) N,N-Dimethylformamide (3 vol) was
added to a mixture of halohydrine (1.0 mmol), potassium cyanate (2.0 mmol)
and DMAP (0.05 mmol). The reaction mixture was heated to 120 °C for 8–14 h
and filtered to remove excess potassium cyanate. The solvent was removed
from the filtrate under vacuum at 65–70 °C to get residue. The resulting
residue was partitioned between ethyl acetate and water. The reaction mixture
was stirred for 10 min. and both the layers were separated. The aqueous layer
was extracted with ethyl acetate. Combined organic layers were dried over
sodium sulfate, filtered and washed with ethyl acetate. The solvent was
removed from the organic layer by distilling at 40–45 °C under vacuum to
obtain 2-oxazolidinone.; (c) N,N-Dimethylformamide (3 vol) was added to a
mixture of halohydrin (1.0 mmol), potassium cyanate (2.0 mmol), ethanol or
methanol (1.5 mmol), and DMAP (0.05 mmol). The reaction mixture was
heated to 120 °C for 8–14 h and filtered to remove excess potassium cyanate.
The solvent was removed from the filtrate under vacuum at 65–70 °C to get
residue. The resulting residue was partitioned between ethyl acetate and
water. The reaction mixture was stirred for 10 min. and both the layers were
separated. The aqueous layer was extracted with ethyl acetate. Combined
organic layers were dried over sodium sulfate, filtered and washed with ethyl
acetate. The solvent was removed from the organic layer by distilling at 40–
45 °C under vacuum to obtain corresponding carbamate.
15. (a) Lynn. J. W. U.S. Patent 2,975,187, 1961; Chem. Abstr. 1961, 55, 16568.; (b)
Steele, A. B. U.S. Patent 2,868,801, 1959; Chem. Abstr. 1959, 53, 10261.; (c)
Bhanage, B. M.; Fujita, S. I.; Ikushima, Y.; Arai, M. Green Chem. 2003, 5, 340; (d)
Kotake, T.; Rajesh, S.; Hayashi, Y.; Mukai, Y.; Ueda, M.; Kimura, M.; Kiso, Y.
Tetrahedron Lett. 2004, 45, 3651; (e) Ariza, X.; Pineda, O.; Urpi, F.; Vilarrasa, J.
Tetrahedron Lett. 2001, 42, 4995. and references are there in.
16. (a) Dyen, M. E.; Swern, D. Chem. Rev. 1967, 67, 197; (b) Dyen, M. E.; Swern, D. J.
Org. Chem. 1968, 33, 379.
21. Hofle, G.; Steglich, W.; Vorbruggen, H. Angew. Chem. Int. Ed. Engl. 1978, 17, 569.