Table 3 Functional group tolerance and recyclability studies
Synthesis, 1983, 429; (c) H. Pellissier, Tetrahedron, 2005, 61,
6479; (d) M. Tius, Eur. J. Org. Chem., 2005, 2193;
(e) A. J. Frontier and C. Collison, Tetrahedron, 2005, 61, 7577.
For selected examples of application see: (f) S. Elz and W. L. Heil,
Bioorg. Med. Chem. Lett., 1995, 5, 667; (g) X. Li and R. Vince,
Bioorg. Med. Chem., 2006, 14, 2942; (h) G. Romeo, L. Materia,
V. Pittala, M. Modica, L. Salerno, M. Siracusa, F. Russo and
K. P. Minneman, Bioorg. Med. Chem., 2006, 14, 5211;
(i) H. Nagano and T. Takahashi, Bull. Chem. Soc. Jpn., 1978,
51, 3335; (j) P. A. Jacobi, D. G. Walker and I. M. A. Odeh, J. Org.
Chem., 1981, 46, 2065; (k) R.-R. Juo and W. Herz, J. Org. Chem.,
1985, 50, 700; (l) M. Miyashita, T. Kumazawa and A. Yoshikoshi,
J. Org. Chem., 1984, 49, 3728; (m) A. Gopalan and P. Magnus,
J. Org. Chem., 1984, 49, 2317; (n) A. Gopalan and P. Magnus,
J. Am. Chem. Soc., 1980, 102, 1756; (o) M. Amat, M. Perez,
N. Llor, M. Martinelli, E. Molins and J. Bosch, Chem. Commun.,
2004, 1602; (p) M. H. Schmitt and S. Blechert, Angew. Chem., Int.
Ed. Engl., 1997, 36, 1474.
Yield
(%)
Entry Substrate
Time/h Product
1
16 0.08
16a 94
2
3
17 0.25
18 0.17
17a 80a
18a 85
3 For selected examples see: (a) W. He, J. Huang, X. F. Sun and
A. J. Frontier, J. Am. Chem. Soc., 2007, 129, 498; (b) I. Walz,
A. Bertogg and A. Togni, Eur. J. Org. Chem., 2007, 2650;
(c) V. K. Aggarwal and A. J. Belfield, Org. Lett., 2003, 5, 5075;
(d) G. Y. Lin, C. Y. Yang and R. S. Liu, J. Org. Chem., 2007, 72,
6753; (e) J. Nie, H. W. Zhu, H. F. Cui, M. Q. Hua and J. A. Ma,
Org. Lett., 2007, 9, 3053; (f) M. Fujiwara, M. Kawatsura,
S. Hayase, M. Nanjo and T. Itoh, Adv. Synth. Catal., 2009, 351,
123; (g) M. Kawatsura, Y. Higuchi, S. Hayase, M. Nanjo and
T. Itoh, Synlett, 2008, 1009; (h) P. Chiu and S. Li, Org. Lett., 2004,
6, 613; (i) J. A. Malona, J. M. Colbourne and A. J. Frontier, Org.
Lett., 2006, 8, 5661; (j) W. He, X. Sun and A. J. Frontier, J. Am.
Chem. Soc., 2003, 125, 14278; (k) G. Liang, S. N. Gradl and
D. Trauner, Org. Lett., 2003, 5, 4931.
4
5
19 3.0b,c
19a 75c
4
4a
PMA/SiO2 (1st)
0.08
0.08
0.33
1.0
237 600d
237 600d
58 200d
19 000d
99
99
97
95
PMA/SiO2 (2nd)
PMA/SiO2 (3rd)
PMA/SiO2 (4th)
4 For selected examples see: (a) P. Kraft and R. Cadalbert, Synthesis,
2002, 2243; (b) M. Ishikura, K. Imaizumi and N. Katagiri,
Heterocycles, 2000, 53, 2201; (c) A. Fernandez-Mateos,
L. Mateos Buron, E. M. Martın de la Nava and R. Rubio
Gonzalez, J. Org. Chem., 2003, 68, 3585; (d) A. Fernandez-Mateos,
E. M. Martın de la Nava and R. Rubio Gonzalez, Tetrahedron,
2001, 57, 1049; (e) C. Song, D. W. Knight and M. A. Whatton,
Org. Lett., 2006, 8, 163; (f) D. L. J. Clive, M. Sannigrahi and
S. Hisaindee, J. Org. Chem., 2001, 66, 954; (g) M. Amere,
J. Blanchet, M.-C. Lasne and J. Rouden, Tetrahedron
Lett., 2008, 49, 2541; (h) M. Rueping, W. Ieawsuwan,
A. P. Antonchick and B. J. Nachtsheim, Angew. Chem., Int. Ed.,
2007, 46, 2097.
5 (a) C. J. Rieder, R. J. Fradette and F. G. West, Chem. Commun.,
2008, 1572; (b) D. Song, A. Rostami and F. G. West, J. Am. Chem.
Soc., 2007, 129, 12019; (c) F. Dhoro, T. E. Kristensen,
V. Stockmann, G. P. A. Yap and M. A. Tius, J. Am. Chem.
Soc., 2007, 129, 7256; (d) A. Rostami, Y. Wang, A. M. Arif,
R. McDonald and F. G. West, Org. Lett., 2007, 9, 703;
(e) T. N. Grant and F. G. West, Org. Lett., 2007, 9, 3789.
6 A. S. S. Sido, S. Chassaing, M. Kumarraja, P. Pale and J. Sommer,
Tetrahedron Lett., 2007, 48, 5911.
a
b
0.1 mol% PMA was employed at room temperature. Reaction
c
performed in CH2Cl2. THP deprotected compound was formed in
20% yield. TOF (hÀ1).
d
with CH2Cl2 and dried under high vacuum pressure prior to
the next cycle.
In conclusion, PMA (in bulk and supported form) efficiently
catalyzes electrocyclization of divinyl ketones under short
reaction times in high yields. The supported catalyst system
was more effective than the bulk catalyst system and permits
recyclability of the used catalyst for up to three cycles with
similar catalytic activity levels. This catalyst system is chemo-
selective and acid-labile functionalities remain intact during
the cyclization process. The present method is therefore a
promising and useful addition to existing catalyst systems for
the construction of five-membered carbocycles in natural
product synthesis.
7 (a) I. V. Kozhevnikov, Chem. Rev., 1998, 98, 171; (b) N. Mizuno
and M. Misono, Chem. Rev., 1998, 98, 199.
8 (a) M. Misono, I. Ono, G. Koyano and A. Aoshima, Pure Appl.
Chem., 2000, 72, 1305; (b) K. Wilson and J. H. Clark, Pure Appl.
Chem., 2000, 72, 1313; (c) F. Dhoro and M. A. Tius, J. Am. Chem.
Soc., 2005, 127, 12472; (d) F. Douelle, L. Tal and M. F. Greaney,
Chem. Commun., 2005, 660.
9 M. Kokubo and S. Kobayashi, Chem.–Asian J., 2009, 4, 526.
10 W. He, I. R. Herrick, T. A. Atesin, P. A. Caruana,
C. A. Kellenberger and A. J. Frontier, J. Am. Chem. Soc., 2008,
130, 1003.
We thank the National Science Council of the Republic of
China (NSC 97-2113-M-259-002-MY3) for generous support.
Notes and references
1 I. N. Nazarov and I. I. Zaretskaya, Izv. Akad. Nauk SSSR,
Ser. Khim., 1941, 211.
2 Recent reviews on the Nazarov reaction: (a) K. L. Habermas and
S. E. Denmark, Organic Reactions, John Wiley & Sons, New York,
1994, ch. 1, vol. 45; (b) C. Santelli-Rouvier and M. Santelli,
11 F. De Simone, J. Andres, R. Torosantucci and J. Waser, Org. Lett.,
2009, 11, 1023.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 1127–1129 | 1129