J. S. Warmus et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2536–2543
2543
of picomolar inhibitors. Analysis of physical properties drove de-
sign to focus on an optimal lipophilicity profile. Further taking
advantage of structural information, and identification of a con-
served water network over the active site, along with the optimal
profile, led to an improved LpxC inhibitor with in vivo activity
against wild type P. aeruginosa. Further work by our group on this
class of inhibitors has been reported.20
Supplementary data
Supplementary data associated with this article can be found, in
include MOL files and InChiKeys of the most important compounds
described in this article.
References and notes
1. Boucher, H. W.; Talbot, G. H.; Bradley, J. S.; Edwards, J. E.; Gilbert, D.; Rice, L. B.;
Scheld, M.; Spellberg, B.; Bartlett, J. Clin. Infect. Dis. 2009, 48, 1.
2. Siegel, R. E. Respir. Care 2008, 53, 471.
Figure 12c. Possible interaction with backbone carboxylate.
3. Maragakis, L. L. Crit Care Med 2010, 38, S345.
4. Falagas, M. E.; Bliziotis, I. A.; Kasiakou, S. K.; Samonis, G.; Athanassopoulou, P.;
Michalopoulos, A. BMC Infect. Dis. 2005, 5, 24.
5. (a) Ott, G. R.; Asakawa, N.; Liu, R.-Q.; Covington, M. B.; Qian, Mi.; Vaddi, K.;
Newton, R. C.; Trzaskos, J. M.; Christ, D. D.; Galya, L., et al Bioorg. Med. Chem.
Lett. 2008, 18, 1288; (b) Duan, J. J.-W.; Chen, L.; Lu; Zhonghui, X.; C.-B.; Liu, R.-
Q.; Covington, M. B.; Qian, M.; Wasserman, Z. R.; Vaddi, K.; Christ, D. D., et al
Bioorg. Med. Chem. Lett. 2008, 18, 241; (c) Johnson, T. W.; Tanis, S. P.; Butler, S.
L.; Dalvie, D.; DeLisle, D. M.; Dress, K. R.; Flahive, E. J.; Hu, Q.; Kuehler, J. E.;
Kuki, A., et al J. Med. Chem. 2011, 54, 3393.
Table 4
O
O
N
OH
N
HO
HO
H
H
N
N
O
OH
O
OH
O
O
6. Shin, H.; Gennadios, H. A.; Whittington, D. A.; Christianson, D. W. Bioorg. Med.
Chem. 2007, 15, 2617.
7. Jackman, J. E.; Fierke, C. A.; Tumey, L. N.; Pirrung, M.; Uchiyama, T.; Tahir, S. H.;
Hindsgaul, O.; Raetz, C. R. H. J. Biol. Chem. 2000, 275, 11002.
21r
22
8. (a) Chen, M.-H.; Steiner, M. G.; de Laszlo, S. E.; Patchett, A. A.; Anderson, M. S.;
Hyland, S. A.; Onishi, R.; Silver, L. L.; Raetz, C. R. H. Bioorg. Med. Chem. Lett. 1999,
9, 313; (b) Pirrung, M. C.; Tumey, L. N.; McClerren, A. L.; Raetz, C. R. H. J. Am.
Chem. Soc. 2003, 125, 1575.
9. Liang, X.; Lee, C.-J.; Chen, X.; Chung, H. S.; Zeng, D.; Raetz, C. R. H.; Li, Y.; Zhou,
P.; Toone, E. J. Bioorg. Med. Chem. 2011, 19, 852.
10. Mansoor, U. F.; Vitharana, D.; Reddy, P. A.; Daubaras, D. L.; McNicholas, P.; Orth,
P.; Black, T.; Siddiqui, M. A. Bioorg. Med. Chem. Lett. 2011, 21, 1155.
11. Kalgutkar, A. S.; Gardner, I.; Obach, R. S.; Shaffer, C. L.; Callegari, E.; Henne, K.
R.; Mutlib, A. E.; Dalvie, D. K.; Lee, J. S.; Nakai, Y., et al Curr. Drug Metab. 2005, 6,
161.
12. Anderson, N. H.; Bowman, J.; Erwin, A.; Harwood, E.; Kline, T.; Mdluli, K.; Ng, S.;
Pfister, K. B.; Shawar, R.; Wagman, A.; Yabannavar, A. WO040620601, 2004.
13. (a) Coggins, B. E.; McClerren, A. L.; Jiang, L.; Le, X.; Rudolph, J.; Hindsgaul, O.;
Raetz, C. R. H.; Zhou, P. Biochemistry 2005, 44, 1114; (b) Barb, A. W.; Jiang, L. R.
H.; Raetz, C. R. H.; Zhou, P. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 18433.
14. (a) Kadam, R. U.; Chavan, A.; Roy, N. Bioorg. Med. Chem Lett. 2007, 17, 861; (b)
Kadam, R. U.; Chavan, A. N. Bioorg. Med. Chem Lett. 2006, 16, 5136.
15. Mochalkin, I.; Knafels, J. D.; Lightle, S. Protein Sci. 2008, 17, 450.
16. (a) Ryckmans, T.; Edwards, M. P.; Horne, V. A.; Correia, A. M.; Owen, D. R.;
Thompson, L. R.; Tran, I.; Tutt, M. F.; Young, T. Bioorg. Med. Chem. Lett. 2009, 19,
4406; (b) Leeson, P. D.; Springthorpe, B. Nat. Rev. Drug Disc. 2007, 6, 881.
17. (a) Davies, S. G.; Sanganee, H. J. Tetrahdron: Asymmetry 1995, 6, 671; (b) Peters,
R.; Althaus, M.; Rolland, A.; Manginot, E.; Veyrat, M. J. Org. Chem. 2006, 71,
7583.
18. All in vivo testing was done in accordance with approved animal use protocols.
19. Moderate challenge levels of bacteria were used in these studies (ꢀ 10 LD50’s)
administered via the IP route. In total, 88% of vehicle treated mice (challenged)
expired across six experiments.
20. Brown, M. F.; Reilly, U. S.; Abramite, J.; Arcari, J.; Oliver, R.; Barham, R.; Che, Y.;
Chen, J. M.; Collantes, E.; Chung, W.; Desbonnet, C.; Doty, J.; Doroski, M.;
Engtrakul, J. J.; Harris, T. M.; Huband, M.; Knafels, J. D.; Leach, K. L.; Liu, S.;
Marfat, A.; Marra, A.; McElroy, E.; Melnick, M.; Menard, C. A.; Montgomery, J.;
Mullins, L.; O’Donnell, J.; Penzien, J.; Plummer, M.; Price, L.;
Shanmugasundaram, V.; Uccello, D.; Warmus, J. S. Wishka, D. G. J. Med.
Data for compound
21r
0.4
2.7
6.7
22
PaLpxc IC50 (nM)
clogD
LipE
MIC (lg/mL)
(pump KO)
0.6
1.9
7.3
0.015
1.75
20
59
—
0.015
1
140
130
37
WT
HuHep t1/2 (min)
Kinetic solubility @ pH 6.5 (
In vivo versus WT (iv) PD50 (mg/kg)
l
M)
bound waters (Fig. 12a). Addition of a hydroxyl group to compound
21r lowered cLogD to 1.9 from 2.7 (Fig. 11), and by our model, is
predicted to hydrogen bond to a tightly bound water molecule
(Fig. 12b) or an acid residue (Asp196 in Fig. 12c).
The result of this change is shown in Table 4. While potency
against the enzyme slightly decreased, most likely due to an in-
crease in desolvation energy, we did see an improved profile. Clear-
ance decreased and solubility increased. We also saw less efflux in
the wild type organism, as the MIC dropped almost 1 dilution. Due
to the improved in vitro clearance and solubility, this compound
was tested in vivo18 and showed activity against wild type (UI-
18) P. aeruginosa through iv administration (PD50 = 37 mpk).19 No
effect was seen when dosed SC. Dosing SC caused aggravation
and the compound was most likely not absorbed. This is the first
LpxC compound in the peer reviewed literature to show in vivo
activity against a wild type P. aeruginosa challenge.
In summary, we utilized structural information, both X-ray co-
crystals and a robust homology model, that guided efficient design