C O M M U N I C A T I O N S
Table 3. Regioselective Grignard Coupling Reactions
1 and 2), the yields were significantly reduced. The use of aliphatic
Grignard reagents led to virtually unselective reactions (entries 3
and 4). While allylic halides 42 and 43 could be stored for short
periods at room temperature, they were not stable toward silica
gel and had to be used without purification. The disparate
regioselectivities observed in alkylation reactions of 42 and 43 with
aliphatic Grignard reagents and the operational difficulties associated
with handling secondary allylic halides20 in which the alkene is
ꢀ,ꢀ-disubstituted differentiate our methodology from the use of
other types of allylic electrophiles.
In conclusion, we have reported a simple two-step process for
the transition-metal-free synthesis of sterically hindered quaternary
and tertiary C-C bonds starting from a diverse set of allylic alcohols
and ethers. A thorough investigation of the mechanistic and
stereochemical aspects of both reactions is underway.
Acknowledgment. The authors are grateful to Dartmouth
College and the Walter and Constance Burke Foundation for their
generous financial support.
Supporting Information Available: Experimental details and
characterization data for all new compounds. This material is available
References
(1) Trost, B. M.; Crawley, M. L. Chem. ReV. 2003, 103, 2921.
(2) Kar, A.; Argade, N. P. Synthesis 2005, 2995.
(3) (a) Alexakis, A.; Ba¨ckvall, J.-E.; Krause, N.; Pa`mies, O.; Die´guez, M. Chem.
ReV. 2008, 108, 2796. (b) Geurts, K.; Fletcher, S. P.; van Zijl, A. W.;
Minnaard, A. J.; Feringa, B. L. Pure Appl. Chem. 2008, 1025.
(4) (a) Netherton, M. R.; Fu, G. C. AdV. Synth. Catal. 2004, 346, 1525. (b)
Fu¨rstner, A.; Martin, R.; Krause, H.; Seidel, G.; Goddard, R.; Lehmann, C.
J. Am. Chem. Soc. 2008, 130, 8773. (c) Visser, M. S.; Heron, N. M.; Didiuk,
M. T.; Sagal, J. F.; Hoveyda, A. H. J. Am. Chem. Soc. 1996, 118, 4291.
(5) (a) Ba¨ckvall, J.-E.; Persson, E. S. M.; Bombrun, A. J. Org. Chem. 1994,
59, 4126. (b) Baker, L.; Minehan, T. J. Org. Chem. 2004, 69, 3957.
(6) (a) Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. J. Am. Chem. Soc.
2005, 127, 4592. (b) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006,
128, 6314. (c) Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.;
Minami, T.; Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968.
(7) (a) Mukai, R.; Horino, Y.; Tanaka, S.; Tamaru, Y.; Kimura, M. J. Am.
Chem. Soc. 2004, 126, 11138. (b) Yasui, H.; Mizutani, K.; Yorimitsu, H.;
Oshima, K. Tetrahedron 2006, 62, 1410. (c) Fiaud, J. C.; De Gournay,
A. H.; Larcheveque, M.; Kagan, H. B. J. Organomet. Chem. 1978, 154,
175. (d) Tsuji, J.; Yamakawa, T.; Kaito, M.; Mandai, T. Tetrahedron Lett.
1978, 19, 2075. (e) Mukaiyama, T.; Nagaoka, H.; Ohshima, M.; Murakami,
M. Chem. Lett. 1986, 15, 1009. (f) Morizawa, Y.; Kanemoto, S.; Oshima,
K.; Nozaki, H. Tetrahedron Lett. 1982, 23, 2953.
a Determined by 1H NMR spectroscopy of unpurified material.
b Isolated yield. c Yield could not be determined because of product
decomposition (presumably via air oxidation) upon purification and
standing in the rotary evaporator.
Table 4. Comparison Study with Other Allylic Electrophiles
(8) (a) Heron, N. M.; Adams, J. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1997,
119, 6205. (b) Adams, J. A.; Heron, N. M.; Koss, A.-M.; Hoveyda, A. H.
J. Org. Chem. 1999, 64, 854.
(9) Greene, T. W.; Wuts, P. G. M. ProtectiVe Groups in Organic Synthesis,
3rd ed.; Wiley: New York, 1999; pp 25-26.
(10) Dondoni, A. Angew. Chem., Int. Ed. 2008, 47, 8995.
(11) (a) Dieter, R. K.; Gore, V. K.; Chen, N. Org. Lett. 2004, 6, 763. (b) Yasui,
K.; Fugami, K.; Tanaka, S.; Tamaru, Y. J. Org. Chem. 1995, 60, 1365.
(12) See the Supporting Information.
(13) (a) Corey, E. J.; Block, E. J. Org. Chem. 1969, 34, 1233. (b) Boekelheide,
V.; Reingold, I. D.; Tuttle, M. J. Chem. Soc., Chem. Commun. 1973, 406.
(14) (a) Winstein, S.; Klinedinst, P. E., Jr.; Robinson, G. C. J. Am. Chem. Soc.
1961, 83, 885. (b) Hammett, L. P. Physical Organic Chemistry; McGraw-
Hill: New York, 1940; p 171. (c) Sneen, R. A. Acc. Chem. Res. 1973, 6,
46.
a Determined by 1H NMR spectroscopy of unpurified material.
b Isolated yield. a Yield could not be determined.
(15) For uncatalyzed coupling reactions with 1° allylic phosphates, see: (a)
Yanagisawa, A.; Hibino, H.; Nomura, N.; Yamamoto, H. J. Am. Chem.
Soc. 1993, 115, 5879. (b) Araki, S.; Sato, T.; Butsugan, Y. J. Chem. Soc.,
Chem. Commun. 1982, 285. (c) Djahanbini, D.; Cazes, B.; Gore, J.
Tetrahedron Lett. 1984, 25, 203.
(16) (a) Chen, K. S.; Battioni, J. P.; Kochi, J. K. J. Am. Chem. Soc. 1973, 95,
4439. (b) Gough, R. G.; Dixon, J. A. J. Org. Chem. 1968, 33, 2148. (c)
Singh, P. R.; Tayal, S. R.; Nigam, A. J. Organomet. Chem. 1972, 42, C9.
(d) Ward, H. R.; Lawler, R. G.; Marzilli, T. A. Tetrahedron Lett. 1970,
11, 521.
(17) (a) Charrier, N.; Zard, S. Z. Angew. Chem., Int. Ed. 2008, 47, 9443. (b)
Sire, B.; Seguin, S.; Zard, S. Z. Angew. Chem., Int. Ed. 1998, 37, 2864.
(18) Ouvry, G.; Quiclet-Sire, B.; Zard, S. Z. Angew. Chem., Int. Ed. 2006, 45,
5002.
There is evidence that primary and secondary aliphatic Grignard
reagents react with electrophiles such as allyl bromide via homolytic
processes.16 Zard and co-workers also observed SN2′ regioselectivity
in the reactions between carbon-centered radicals generated from
dithiocarbonates and allylic sulfones17/phosphonates.18 In contrast,
reactions with aromatic Grignards may proceed through a more
ionic mechanism.
We then conducted a study comparing the efficiencies and
regioselectivities of uncatalyzed C-C bond-forming reactions
between Grignard reagents and secondary allylic chlorides and
bromides19 (Table 4) against C-C bond formation starting with
phosphorothioate ester 4c. Although the regioselectivities of the
reactions using aromatic Grignard reagents remained high (entries
(19) Breton, G. W.; Shugart, J. H.; Hughey, C. A.; Conrad, B. P.; Perala, S. M.
Molecules 2001, 6, 655.
(20) Carrillo-Marquez, T.; Caggiano, L.; Jackson, R. F. W.; Grabowska, U.;
Rae, A.; Tozer, M. J. Org. Biomol. Chem. 2005, 3, 4117.
JA100747N
9
4106 J. AM. CHEM. SOC. VOL. 132, NO. 12, 2010