Scheme 1. Synthesis of Non-Targeted SN38 Prodrug
Tissue hypoxia due to inadequate blood supply is a
common feature of solid tumors. Unfortunately, hypoxic
tumor cells appear to be resistant to both radiotherapy and
chemotherapy.12 However, tumor hypoxia provides a unique
strategy for cancer therapy. Several therapeutics have been
designed to form prodrugs which can be activated by hypoxia
under bioreductive conditions.13,14 In this regard, prodrugs
with indolequinone structures have been studied inten-
sively.15,16 There are two mechanisms through which in-
dolequinone-based prodrugs can induce cytotoxicity. First,
the indolequinone structure itself can be converted to a
reactive, cytotoxic species following reduction to a hydro-
quinone.17 Alternatively, the indolequinone moiety can be
used to form a prodrug that selectively releases other
cytotoxic agents to hypoxic (i.e., bioreductive) tissues.15
SN38 belongs to the class of 20(s)-camptothecin (CPT)
group of compounds that act as potent topoisomerase I
inhibitors. Due to its general toxicity and poor solubility,
SN38 cannot be systemically administered to cancer patients.
Numerous modifications have been made to enhance the
drugs solubility including liposomal formulation,18 antibody
conjugation,19 and PEG functionalization.20 CPT-11 (Irino-
tecan) is a SN38 derivative and clinically approved for the
treatment of colorectal carcinoma.21 However, only 2-5%
of of the injected dose of CPT-11 is converted to active SN38
and the drug has serious side effects including gastrointestinal
toxicity and neutropenia.22
the prodrug will be water-soluble due to the presence of the
targeting peptide and the short polyethylene glycol tether.
Second, the prodrug will be specifically delivered to cells
that overexpress the Rvꢀ3 integrin.11 Finally, the active drug
SN38 will be released under bioreductive conditions pre-
sented in tumor tissues.24 This design will enhance drug
specificity toward tumor cells that overexpress the Rvꢀ3
integrin and thus reduce side effects.
The synthesis of the nontargeted SN38 prodrug 12 is
demonstrated in Scheme 1. The N-1 methyl analogue of the
indolequinone structure has been synthesized by Naylor et
(9) Kunath, K.; Merdan, T.; Hegener, O.; Haberlein, H.; Kissel, T.
J. Gene Med. 2003, 5, 588.
(10) Haubner, R.; Bruchertseifer, F.; Bock, M.; Kessler, H.; Schwaiger,
M.; Wester, H. Nuklearmedizin-Nuclear Med. 2004, 43, 26.
(11) Shukla, R.; Thomas, T. P.; Peters, J.; Kotlyar, A.; Myc, A.; Baker,
J. R. Chem. Commun. 2005, 46, 5739.
(12) Brown, J. M.; William, W. R. Nat. ReV. Cancer 2004, 4, 437.
(13) Lee, H. H.; Wilson, W. R.; Ferry, D. M.; vanZijl, P.; Pullen, S. M.;
Denny, W. A. J. Med. Chem. 1996, 39, 2508
.
(14) Priyadarsini, K. I.; Naylor, M. A.; Stratford, M. R. L.; Wardman,
P. Free Radical Res. 1996, 25, 99
.
(15) Naylor, M. A.; Jaffar, M.; Nolan, J.; Stephens, M. A.; Butler, S.;
Patel, K. B.; Everett, S. A.; Adams, G. E.; Stratford, I. J. J. Med. Chem.
1997, 40, 2335
.
(16) Hernick, M.; Flader, C.; Borch, R. F. J. Med. Chem. 2002, 45,
3540
.
(17) Walton, M. I.; Smith, P. J.; Workman, P. Cancer Commun. 1991,
3, 199.
(18) Sadzuka, Y.; Takabe, H.; Sonobe, T. J. Controlled Release 2005,
108, 453.
(19) Moon, S. J.; Govindan, S. V.; Cardillo, T. M.; D’Souza, C. A.;
Hansen, H. J.; Goldenberg, D. M. J. Med. Chem. 2008, 51, 6916.
(20) Zhao, H.; Rubio, B.; Sapra, P.; Wu, D. C.; Reddy, P.; Sai, P.;
Martinez, A.; Gao, Y.; Lozanguiez, Y.; Longley, C.; Greenberger, L. M.;
Horak, I. D. Bioconjugate Chem. 2008, 19, 849.
Here we report the design, synthesis and preliminary drug
release study of a cyclic RGDyK (denoted by c(RGDyK))23
targeted SN38 prodrug possessing an indolequinone structure
for bioreductively triggered drug release (compound 1,
Scheme 3). There are three moieties in the prodrug design,
namely a therapeutic drug SN38, an indolequinone structure
serving as a drug releasing trigger, and an Rvꢀ3 integrin
targeting peptide c(RGDyK). We envision that this design
will impart the following advantages over the free drug. First,
(21) Vanhoefer, U.; Harstrick, A.; Achterrath, W.; Cao, S. S.; Seeber,
S.; Rustum, Y. M. J. Clin. Oncol. 2001, 19, 1501.
(22) Oreilly, S.; Rowinsky, E. K. Crit. ReV. Oncol. Hemat. 1996, 24, 47.
(23) Auernheimer, J.; Haubner, R.; Schottelius, M.; Wester, H. J.;
Kessler, H. HelV. Chim. Acta 2006, 89, 833.
(24) Everett, S. A.; Swann, E.; Naylor, M. A.; Stratford, M. R. L.; Patel,
K. B.; Tian, N.; Newman, R. G.; Vojnovic, B.; Moody, C. J.; Wardman, P.
Biochem. Pharmacol. 2002, 63, 1629.
Org. Lett., Vol. 12, No. 7, 2010
1385