ORGANIC
LETTERS
2010
Vol. 12, No. 7
1412-1415
Copper-Catalyzed Diacetoxylation of
Olefins using PhI(OAc)2 as Oxidant
Jayasree Seayad,* Abdul Majeed Seayad, and Christina L. L. Chai*
Institute of Chemical and Engineering Sciences, 1 Pesek Road, Singapore 627833
jayasree_seayad@ices.a-star.edu.sg; christina_chai@ices.a-star.edu.sg
Received December 7, 2009
ABSTRACT
Copper(I) or -(II) salts with weakly coordinating anions catalyze the diacetoxylation of olefins efficiently in the presence of PhI(OAc)2 as the
oxidant under mild conditions. The reaction is effective for aryl, aryl alkyl, as well as aliphatic terminal and internal olefins forming the
corresponding vicinal diacetoxy compounds in 70-85% yields and dr (syn/anti) of up to 5.2. Under these conditions, homoallylic alcohols
formed the corresponding tetrahydrofuran derivatives in high yields.
Catalytic vicinal dioxygenation of olefins is an extremely
important reaction in the synthesis of high value intermedi-
ates for pharmaceuticals and fine chemicals.1 The OsO4-
catalyzed (or Upjohn) dihydroxylation2 and its enantiose-
lective version, the Sharpless dihydroxylation,3 are among
the most widely used dioxygenation reactions in organic
synthesis. However, the use of expensive and highly toxic
osmium catalysts has limited the use of this technology to
merely synthesis in a small scale. In recent years, there has
been substantial interest in the development of alternative
catalysts for alkene dioxygenations.4 Sudalai et al.5 reported
a metal-free catalytic version of the Woodward-Prevost6
reaction using LiBr as the catalyst. In this reaction, syn and
anti diols with excellent diastereoselectivities were obtained
when NaIO4 or PhI(OAc)2 was used as the oxidant, respec-
tively. Recently, Li et al.7 and Jiang et al.8 independently
reported a Pd-catalyzed diacetoxylation of alkenes to the syn-
1,2-diacetates using PhI(OAc)2 or molecular oxygen as the
oxidants, respectively. In the former case, a cationic pal-
ladium complex with electron-rich diphosphines as ligands
was essential for the reaction, while in the latter case,
Pd(OAc)2 was sufficient to catalyze the transformation
efficiently.
In recent years, the use of copper salts as catalysts has
gained much prominence in organic synthesis due to their
economic attractiveness, good functional group tolerance, and
scalability in large-scale synthetic procedures.9 The peroxy-
disulfate oxidation of aliphatic olefins10 and R- and ꢀ-
(4) Shing, T. K. M.; Tai, V-W. F.; Tam, E. K. W. Angew. Chem., Int.
Ed. 1994, 33, 2312. (b) Shing, T. K. M.; Tam, E. K. W.; Tai, V-W. F.;
Chung, I. H. F.; Jiang, Q. Chem.sEur. J. 1996, 2, 50. (c) Verboom, R. C.;
Plietker, B. J.; Ba¨ckvall, J. E. J. Organomet. Chem. 2003, 687, 508. (d)
Yoshisaki, H.; Ba¨ckvall, J. E. J. Org. Chem. 1998, 63, 9339. (e) Grennberg,
H.; Ba¨ckvall, J. E. J. Chem. Soc., Chem. Commun. 1993, 1331. (f)
Grennberg, H.; Fazon, S.; Ba¨ckvall, J. E. Angew. Chem., Int. Ed. Engl.
1993, 32, 263. (g) Ba¨ckvall, J. E.; Nordberg, R. E. J. Am. Chem. Soc. 1981,
103, 4959.
(1) Hudlicky, M. Oxidations in Organic Chemistry; ACS Monograph
Series 186; American Chemical Society: Washington, DC, 1990; p 174.
(b) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis,
2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000; p 357. (c) Haines,
A. H. In ComprehensiVe Organic Synthesis, 1st ed.; Trost, B. M., Fleming,
I., Eds.; Pergamon: Oxford, 1991; Vol. 7, p 437.
(2) (a) VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976,
1973. (b) Eames, J.; Mitchell, H.; Nelson, A.; O’Brien, P.; Warren, S.;
Wyatt, P. J. Chem. Soc., Perkin. Trans. 1 1999, 1095.
(5) Emmanuvel, L.; Ali Shaikh, T. M.; Sudalai, A. Org. Lett. 2005, 7,
5071.
(6) (a) Woodward, R. B.; Brutcher, F. V. J. Am. Chem. Soc. 1958, 80,
209. (b) Pre´vost, C. Compt. Rend. 1933, 196, 1129.
(3) (a) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.;
Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968. (b) Kolb, H. C.; Van
Nieuwenhze, M. S.; Sharpless, K. B. Chem. ReV. 1994, 94, 2483. (c)
Gonzalez, J.; Aurigemma, C.; Truesdale, L. Organic Syntheses; Wiley: New
York, 2004; Collect. Vol. 10, p 603; Org. Synth. 2002, 79, 93. (d) Johnson,
R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima,
I., Ed.; VCH: New York, 2000.
(7) Li, Y.; Song, D.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 2962.
(8) Wang, A.; Jiang, H.; Chen, H. J. Am. Chem. Soc. 2009, 131, 3846.
(9) (a) Hideki, Y.; Koichiro, O. Angew. Chem., Int. Ed. 2005, 44, 4435.
(b) Ken-ichi, Y.; Kiyoshi, T. Chem. ReV. 2008, 108, 2874. (c) Punniya-
murthy, T.; Rout, L. Coord. Chem. ReV. 2008, 252, 134. (d) Olafs, D.;
Hien-Quang, D.; Dmitry, S. Acc. Chem. Res. 2009, 42, 1074.
10.1021/ol902813m 2010 American Chemical Society
Published on Web 03/11/2010