Mono- and Dinuclear Coordination Compounds
3
7.5 Hz, 2 H, Ar-H(a)], 6.58 [t, JH,H = 7.5 Hz, 2 H, Ar-H(b)], 6.50
Acknowledgments
3
3
[d, JH,H = 7.9 Hz, 2 H, Ar-H(j)], 6.36 [t, JH,H = 7.4 Hz, 2 H, Ar-
H(h)], 3.38 (m, 16 H, NCH2), 1.75 (m, 16 H, CH2CH2CH2), 1.39
(qt, 3JH,H = 7.4 Hz, 16 H, CH2CH3), 0.96 (t, 3JH,H = 7.4 Hz, 24 H,
CH3) ppm. 13C NMR (100 MHz, [D7]DMF, 25 °C): δ = 168.1
(C=O), 166.7 (N=CH), 166.9, 165.3, 152.4, 150.1, 146.3, 137.5,
134.6, 134.0, 132.9, 127.9, 124.9, 122.7, 122.2, 121.01, 119.9, 113.6
(Ar-C), 58.9 (NCH2), 24.2 (CH2CH2CH2), 20.2 (CH2CH3), 13.8
This work was supported by the Deutsche Forschungsgemeinschaft
(DFG) (IRTG 1444) and the Fonds der Chemischen Industrie. We
thank Dr Alexander Hepp for measuring the NMR spectra and Dr
Heinrich Luftmann for measuring the mass spectra.
[1] a) D. L. Caulder, C. Brückner, R. E. Powers, S. König, T. N.
Parac, J. A. Leary, K. N. Raymond, J. Am. Chem. Soc. 2001,
123, 8923–8938; b) M. Albrecht, I. Janser, R. Fröhlich, Chem.
Commun. 2005, 157–165; c) D. K. Chand, K. Biradha, M. Fu-
jita, S. Sakamoto, K. Yamaguchi, Chem. Commun. 2002, 2486–
2487; d) C. He, L.-Y. Wang, Z.-M. Wang, Y. Liu, C.-S. Liao,
C.-H. Yan, J. Chem. Soc., Dalton Trans. 2002, 134–135; e) M.
Fujita, M. Tominaga, A. Hori, B. Therrien, Acc. Chem. Res.
2005, 38, 371–380; f) P. Mal, D. Schultz, K. Beyeh, K. Ris-
sanen, J. R. Nitschke, Angew. Chem. 2008, 120, 8421–8425; An-
gew. Chem. Int. Ed. 2008, 47, 8297–8301.
[2] a) X.-Y. Cao, J. Harrowfield, J. Nitschke, J. Ramírez, A.-M.
Stadler, N. Kyritsakas-Gruber, A. Madalan, K. Rissanen, L.
Rosso, G. Vaughan, J.-M. Lehn, Eur. J. Inorg. Chem. 2007,
2944–2965; b) S. K. Dey, T. S. M. Abedin, L. N. Dawe, S. S.
Tandon, J. L. Collins, L. K. Thompson, A. V. Postnikov, M. S.
Alam, P. Müller, Inorg. Chem. 2007, 46, 7767–7781.
[3] a) J.-C. Chambron, C. O. Dietrich-Buchecker, V. Heitz, J.-F. Ni-
erengarten, J.-P. Sauvage, C. Pascard, J. Guilhem, Pure Appl.
Chem. 1995, 67, 233–240; b) Z. Yin, Y. Zhang, J. He, J.-P.
Cheng, Chem. Commun. 2007, 2599–2601.
[4] P. N. W. Baxter, J.-M. Lehn, G. Baum, D. Fenske, Chem. Eur.
J. 1999, 5, 102–112.
[5] a) J.-M. Lehn, Supramolecular Chemistry: Concepts and Per-
spectives, VCH, Weinheim, 1995; b) C. Piguet, G. Bernardinelli,
G. Hopfgartner, Chem. Rev. 1997, 97, 2005–2062; c) M. Al-
brecht, Chem. Rev. 2001, 101, 3457–3497.
[6] a) B. Kersting, M. Meyer, R. E. Powers, K. N. Raymond, J.
Am. Chem. Soc. 1996, 118, 7221–7222; b) M. Albrecht, M.
Schneider, Eur. J. Inorg. Chem. 2002, 1301–1306; c) M. Al-
brecht, Chem. Soc. Rev. 1998, 27, 281–287; d) E. J. Enemark,
T. D. P. Stack, Inorg. Chem. 1996, 35, 2719–2720; e) E. J. Ene-
mark, T. D. P. Stack, Angew. Chem. 1995, 107, 1082–1084; An-
gew. Chem. Int. Ed. Engl. 1995, 34, 996–998.
[7] a) M.-T. Youinou, R. Ziessel, J.-M. Lehn, Inorg. Chem. 1991,
30, 2144–2148; b) R. Krämer, J.-M. Lehn, A. De Cian, J. Fi-
scher, Angew. Chem. 1993, 105, 764–767; Angew. Chem. Int.
Ed. Engl. 1993, 32, 703–706; c) A. Marquis, V. Smith, J. Har-
rowfield, J.-M. Lehn, H. Herschbach, R. Sanvito, E. Leize-
Wagner, A. Van Dorsselaer, Chem. Eur. J. 2006, 12, 5632–5641.
[8] a) M. J. Hannon, C. L. Painting, N. W. Alcock, Chem. Com-
mun. 1999, 2023–2024; b) G. I. Pascu, A. C. G. Hotze, C. San-
chez-Cano, B. M. Kariuki, M. J. Hannon, Angew. Chem. 2007,
119, 4452–4456; Angew. Chem. Int. Ed. 2007, 46, 4374–4378;
c) S. G. Sreerama, S. Pal, Inorg. Chem. 2005, 44, 6299–6307; d)
M. Hong, F. Chen-jie, D. Chun-ying, L. Yu-ting, M. Quing-
jin, Dalton Trans. 2003, 1229–1234.
[9] a) F. E. Hahn, B. Birkmann, T. Pape, Dalton Trans. 2008, 2100–
2102; b) F. E. Hahn, T. Kreickmann, T. Pape, Dalton Trans.
2006, 769–771; c) T. Kreickmann, C. Diedrich, T. Pape, H. V.
Huynh, S. Grimme, F. E. Hahn, J. Am. Chem. Soc. 2006, 128,
11808–11819; d) F. E. Hahn, T. Kreickmann, T. Pape, Eur. J.
Inorg. Chem. 2006, 535–539.
[10] a) M. Albrecht, M. Napp, M. Schneider, P. Weis, R. Fröhlich,
Chem. Commun. 2001, 409–410; b) M. J. Hannon, S. Bunce,
A. J. Clarke, N. W. Alcock, Angew. Chem. 1999, 111, 1353–
1355; Angew. Chem. Int. Ed. 1999, 38, 1277–1278.
[11] a) C. Piguet, G. Hopfgartner, B. Bocquet, O. Schaad, A. F. Wil-
liams, J. Am. Chem. Soc. 1994, 116, 9092–9102; b) C. Piguet,
J.-C. G. Bünzli, G. Bernardinelli, G. Hopfgartner, S. Petoud, O.
Schaad, J. Am. Chem. Soc. 1996, 118, 6681–6697; c) V. C. M.
Smith, J.-M. Lehn, Chem. Commun. 1996, 2733–2734.
(CH ) ppm. IR (KBr): ν = 3218 (NH), 2958, 2874 (CH), 1684
˜
3
(C=O), 1654 (C=C), 1609 (C=N) cm–1. UV/Vis (DMF): λmax (ε) =
301 (29000), 424 (6200), 523 nm (1700 mol–1 dm3 cm–1). MS (ESI,
negative ions): m/z = 435.98 [Ni2(1)2]2–, 920.94 [K[Ni2(1)2]]–,
1114.24 [(Bu4N)[Ni2(1)2]]–. C72H98N6Ni2O4S4 (1357.23): calcd. C
63.72, H 7.28, N 6.19, S 9.45; found C 63.88, H 7.39, N 5.91, S
9.24.
X-ray Diffraction Studies: Diffraction data for [Cp2Ti(H-2)]·
EtOH·0.5CHCl3 and (Bu4N)2[Ni2(1)2] were collected with a Bruker
AXS APEX CCD diffractometer equipped with a rotation anode
at 153(2) K using graphite-monochromated Mo-Kα radiation (λ =
0.71073 Å) for [Cp2Ti(H-2)]·EtOH·0.5CHCl3 or Cu-Kα radiation (λ
= 1.54178 Å) for (Bu4N)2[Ni2(1)2], respectively. Diffraction data
were collected over the full sphere and were corrected for absorp-
tion. The data reduction was performed with the Bruker
SMART[23] program package. Structure solutions were found with
the SHELXS-97[24] package using the heavy-atom method or the
direct methods and were refined with SHELXL-97[25] against |F2|
using first isotropic and later anisotropic thermal parameters for all
non-hydrogen atoms. Hydrogen atoms were added to the structure
models on calculated positions.
CCDC-691379 {for [Cp2Ti(H-2)]·EtOH·0.5CHCl3} and -734840
{for Bu4N)2[Ni2(1)2]} contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.
ac.uk./data/request/cif.
Crystal Data for [Cp2Ti(H-2)]·EtOH·0.5CHCl3: C39.5H35.5N2-
Cl1.5O3S2Ti, M = 751.39, µ = 0.510 mm–1, ρ = 1.398 gcm–3, mono-
clinic, P21/n, Z = 8, a = 12.1019(4), b = 16.5718(6), c =
35.7715(13) Å, β = 95.6730(10)°, V = 7138.8(4) Å3, 72140 measured
reflections, 17115 unique reflections (Rint = 0.0577), R = 0.0754,
wR2 = 0.1940 for 11683 contributing reflections [IՆ2σ(I)], refine-
ment against |F2|with anisotropic thermal parameters for all non-
hydrogen atoms and hydrogen atoms on calculated positions. The
asymmetric unit contains two essentially identicalmolecules of
[Cp2Ti(H-1)], two molecules of EtOH and one disordered molecule
of CHCl3.
Crystal Data for (Bu4N)2[Ni2(1)2]: C72H98N6Ni2O4S4, M = 1357.22,
µ = 2.120 mm–1, ρ = 1.251 gcm–3, orthorhombic, Fdd2, Z = 8, a =
36.989(2), b = 44.083(3), c = 8.8366(6) Å, V = 14409(2) Å3, 20469
measured reflections, 6315 unique reflections (Rint = 0.1263), R =
0.0773, wR2 = 0.1536 for 4986 contributing reflections [IՆ2σ(I)],
refinement against |F2| with anisotropic thermal parameters for all
non-hydrogen atoms and hydrogen atoms on calculated positions.
The complex anion resides on a crystallographic twofold axis pass-
ing through its midpoint. Some residual electron density on and
close to the twofold axis was found but could not be refined as
solvent molecules (methanol or diethyl ether).
Supporting Information (see also the footnote on the first page of
this article): Detailed experimental data for the preparation of H3-
2.
Eur. J. Inorg. Chem. 2009, 3600–3606
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
3605