(d, J = 5.7 Hz, 1H), 7.67–7.64 (m, 4H), 7.45–7.39 (m, 6H), 6.32
(dd, J = 3.9, 1.4 Hz, 1H), 4.40–4.23 (m, 3H), 4.00 (dd, J = 9.8, 2.0 Hz,
1H), 3.63 (s, 1H), 3.62 (dd, J = 9.1, 2.5 Hz, 1H), 2.74–2.68 (m, 1H),
2.24–2.16 (m, 1H), 1.91–1.85 (m, 1H), 1.48 (s, 3H), 1.32 (t, J = 7.1, 3H),
1.11 (s, 9H). 13C NMR (CDCl3, 100 MHz) d 175.7, 157.2, 156.9, 148.9,
141.9, 139.5, 135.5, 135.4, 132.6, 132.5, 130.0, 129.9, 127.8, 127.6,
124.5, 124.2, 86.0, 79.9, 74.5, 64.8, 62.5, 60.4, 52.3, 28.0, 26.9, 26.8,
25.0, 19.2, 14.1. 19F NMR (CDCl3, 376 MHz) d ꢀ164. FTIR (NaCl)
nmax = 3446, 3197, 3027, 2931, 2858, 1720, 1708, 1669, 1471, 1428,
1393, 1363, 1252, 1113, 1068, 758, 702. ESI (+) LRMS m/z (relative
intensity): 606.99 (100%), 607.99 (35%). ESI (+) HRMS (m/z):
[M + Na]+ calcd for C30H37N2O7FSi 607.2252; found, 607.2262.
1 P. Herdewijn, Modified Nucleosides, Biochemistry Biotechnology
and Medicine, Wiley-VCH Verlag Gmbh & Co, Weinheim, 2008.
2 (a) C. K. Chu, Antiviral Nucleosides: Chiral Synthesis and
Chemotherapy, Elsevier, New York, 2003; (b) C. K. Chu and
D. C. Baker, Nucleosides and Nucleotides as Antitumor and
Antiviral Agents, Plenum Press, New York, 1993.
3 M. A. Richman Fischl, D. D. Grieco, M. H. Gottlieb,
M. S. Volberding, P. A. Laskin, O. L. Leedom,
J. M. Groopman, J. E. Mildvan, D. Schooley, R. T. Jackson,
G. G. Durack and D. T. King, New Engl. J. Med., 1987, 317,
185–191.
Scheme 2 Nucleoside synthesis with N2-acetylguanine.
Notes and references
4 D. B. Longley, D. P. Harkin and P. G. Johnston, Nat. Rev. Cancer,
2003, 3, 330–338.
z General experimental procedure for multicomponent nucleoside
synthesis: dihydrofuran 5 (85 mg, 0.25 mmol) and ethyl pyruvate
(34 mL, 0.3 mmol, 1.2 equiv.) were dissolved in DCM (3 mL) under
argon. This was then cooled to ꢀ78 1C followed by the addition of
TiCl4 (0.3 mL, 1 M, 0.3 mmol, 1.2 equiv.). This was allowed to stir for
1 h. The TMS protected nucleoside (prepared according to either
method A or B) was then added. The reaction was then stirred at 1 h at
ꢀ78 1C followed by warming to 23 1C and stirring for 1 h. The
reaction was then cooled back to ꢀ78 1C and quenched with aq.
NaHCO3. The reaction mixture was then allowed to warm to 23 1C
then filtered through celite. The filtrate was then extracted with DCM
(3 ꢃ 10 mL). The organics were then washed with brine, dried over
MgSO4, filtered, and concentrated in vacuo. The crude material was
then purified via flash chromatography. Method A: commercially
5 S. Broder, H. Mitsuya and R. Yarochoan, Science, 1990, 249,
1533–1544.
6 Handbook of Nucleoside Synthesis, ed. H. Vorbruggen and
C. Ruh-Pohlenz, Wiley Inter Science, New York, 2001.
7 For recent synthetic methods, see: (a) S. Son and G. C. Fu, J. Am.
Chem. Soc., 2007, 129, 1046–1047; (b) M. K. Lakshman,
J. C. Keeler, F. N. Ngassa, J. H. Hilmer, P. Pradhan, B. Zajc
and K. A. Thomasson, J. Am. Chem. Soc., 2007, 129, 68–76;
(c) A. K. Ogawa, Y. Q. Wu, D. L. McMinn, J. Q. Liu,
P. G. Schultz and F. E. Romesberg, J. Am. Chem. Soc., 2000,
122, 3274–3287; (d) B. M. Trost and Z. Shi, J. Am. Chem. Soc.,
1996, 118, 3037–3038; (e) W.-B. Choi, L. J. Wilson, S. Yeola and
D. C. Liotta, J. Am. Chem. Soc., 1991, 113, 9377–9379;
(f) L. J. Wilson and D. Liotta, Tetrahedron Lett., 1990, 31,
1815–1818; (g) L. J. Wilson and D. Liotta, J. Org. Chem., 1992,
57, 1948–1952 and references cited therein.
available, O,O0-bis(trimethylsilyl)thymine
Sigma-Aldrich) was added as solid to the reaction mixture.
7 (405 mg, 1.5 mmol,
a
Method B: silylated nucleoside was prepared as follows. To a suspension
of nucleoside (0.75 mmol, 3 equiv.) in dichloromethane (4 mL) were
added triethylamine (209 mL, 1.5 mmol, 6 equiv.), followed by
trimethylsilyl triflate (271 mL, 6 equiv.). The resulting reaction mixture
was stirred until clear, for about 30 min. The mixture was typically
transferred via cannula to the multicomponent reaction. Ethyl
2-((2R,3S,5S)-5-((tert-butyldiphenylsilyloxy)methyl)-2-(5-methyl-2,4-
dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-2-hydroxy-
propanoate (9): prepared via method A, purified with 60% EtOAc in
8 (a) U. Niedballa and H. Vorbruggen, J. Org. Chem., 1974, 39,
¨
1974, 39, 3672–3674 and references cited therein.
¨
3654–3660; (b) U. Niedballa and H. Vorbruggen, J. Org. Chem.,
9 H. Vorbruggen, K. Krolikiewicz and B. Bennua, Chem. Ber., 1981,
¨
114, 1234–1255.
10 (a) A. K. Ghosh, S. S. Kulkarni, C.-X. Xu and P. E. Fanwich, Org.
Lett., 2006, 8, 4509–4511; (b) A. K. Ghosh, C.-X. Xu,
S. S. Kulkarni and D. Wink, Org. Lett., 2005, 7, 7–10;
(c) A. K. Ghosh, R. Kawahama and D. Wink, Tetrahedron Lett.,
2000, 41, 8425–8429; (d) A. K. Ghosh and R. Kawahama, Tetra-
hedron Lett., 1999, 40, 1083–1086.
11 (a) C. Herdeis, Synthesis, 1986, 232–233; (b) J. A. Walker,
J. J. Chen, D. S. Wise and L. B. Townsend, J. Org. Chem., 1996,
61, 2219–2221.
hexanes. (70%) [a]D +37.7 (c 1.12, CHCl3). 1H NMR (CDCl3,
23
400 MHz) d 9.08 (s, 1H), 7.66 (d, J = 6.5 Hz, 4H), 7.43–7.35 (m, 7H),
6.33 (d, J = 6.5 Hz, 1H), 4.38–4.18 (m, 4H), 3.98 (dd, J = 9.1, 2.4 Hz,
1H), 3.68 (dd, J = 8.6, 2.9 Hz, 1H), 2.76–2.70 (m, 1H), 2.25–2.18 (m,
1H), 2.20–1.86 (m, 1H), 1.58 (s, 3H), 1.42 (s, 3H), 1.32 (t, J = 7.1, 3H),
1.11 (s, 9H). 13C NMR (CDCl3, 100 MHz) d 175.7, 163.7, 150.2, 135.8,
135.4, 135.2, 133.2, 132.6, 129.9, 129.8, 127.8, 127.7, 111.7, 85.1, 78.7,
77.2, 74.1, 65.1, 62.4, 51.3, 28.3, 27.0, 24.7, 19.4, 14.1, 11.9. FTIR
(NaCl) nmax = 2955, 2929, 1698, 1684, 1472, 1457, 1258, 1112, 703.
ESI (+) LRMS m/z (relative intensity): [M + Na]+ 603.14 (100%).
ESI (+) HRMS (m/z): [M]+ calcd for C31H40N2O7Si 603.2503; found,
603.2506. Ethyl 2-((2R,3S,5S)-5-((tert-butyldiphenylsilyloxy)methyl)-
2-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-
3-yl)-2-hydroxypropanoate (10): prepared via method B, purified
12 Preliminary antiviral evaluation of compounds 11 and 12 was
carried out by Dr Hiroaki Mitsuya and Dr Kenji Maeda (National
Cancer Institute). These two compounds did not exhibit any
appreciable antiviral activity. Evaluation of other analogs is
ongoing.
13 Analytical HPLC conditions: column, Sunfire C18, 30 ꢃ 100 mm,
5 micron, flow rate = 40 mL minꢀ1, l = 215 nm,isocratic 75 : 25
MeOH–H2O; Rt 17a, 14.6 min; Rt 17b, 14.3 min.
23
with 60% EtOAc in hexanes. (65%) [a]D +50.3 (c 0.72, CHCl3).
14 P. Garner and S. Ramakanth, J. Org. Chem., 1988, 53, 1294–1298.
15 R. Zou and M. J. Robins, Can. J. Chem., 1987, 65, 1436–1437.
1H NMR (CDCl3, 400 MHz) d 9.79 (d, JH–F = 4.2 Hz, 1H), 7.91
ꢁc
This journal is The Royal Society of Chemistry 2010
1220 | Chem. Commun., 2010, 46, 1218–1220