M. C¸ amur et al. / Journal of Photochemistry and Photobiology A: Chemistry 222 (2011) 266–275
275
References
[30] U. Michelsen, H. Kliesch, G. Schnurpfeil, A.K. Sobbi, D. Wöhrle, Photochem.
Photobiol. 64 (1996) 694–701.
[31] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, second ed.,
Pergamon Press, Oxford, 1989.
[1] C.C. Leznoff, A.B.P. Lever, Phthalocyanines: Properties and Applications, vols.
1–4, VCH, New York, 1989, 1993, 1996.
[32] A.A. Esenpınar, M. Bulut, Synthesis and characterization of novel ␣- or -
tetra[6,7-dihexyloxy-3-(4-oxyphenyl)coumarin]-substituted metal-free and
metallo phthalocyanines, Polyhedron 28 (2009) 3129–3137.
[33] M. C¸ amur, A.R. Özkaya, M. Bulut, Synthesis, characterization and spectroscopic
properties of new fl uorescent 7,8-dihexyloxy-3-(4-oxyphenyl)coumarin sub-
stituted phthalocyanines, J. Porphyr. Phthalocya. 13 (2009) 691–701.
[34] S. Fery-Forgues, D. Lavabre, Are fluorescence quantum yields so tricky to mea-
sure? A demonstration using familiar stationery products, J. Chem. Educ. 76
(1999) 1260–1264.
[35] D. Maree, T. Nyokong, K. Suhling, D. Phillips, Effects of axial ligands on the
photophysical properties of silicon octaphenoxyphthalocyanine, J. Porphyr.
Phthalocya. 6 (2002) 373–376.
[36] A. Ogunsipe, J.Y. Chen, T. Nyokong, Photophysical and photochemical studies of
zinc(II) phthalocyanine derivatives-effects of substituents and solvents, New J.
Chem. 28 (2004) 822–827.
[2] J. Simon, P. Bassoul, Design of Molecular Materials: Supramolecular Engineer-
ing, VCH, Weinheim, 2000.
[3] P.R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present
and future, Mater. Chem. Phys. 77 (2002) 117–133.
[4] J.L. Serrano (Ed.), Metallomesogens, VCH, Weinheim, 1996, pp. 160–175.
[5] M.J. Cook, N.B. McKeown, J.M. Simmons, A.J. Thomson, M.F. Daniel, K.J.
Harrison, R.M. Richardson, S.J. Roser, Spectroscopic and X-ray diffraction
study of Langmuir–Blodgett films of some 1,4,8,11,15,18-hexaalkyl-22,25-
bis(carboxypropyl)phthalocyanines, J. Mater. Chem. 1 (1991) 121–128.
[6] M.J. Cook, A.J. Dunn, F.M. Daniel, R.C.O. Hart, R.M. Richardson, S.J. Roser,
Fabrication of ordered Langmuir–Blodgett multilayers of octa-n-alkoxy
phthalocyanines, Thin Solid Films 159 (1988) 395–404.
[7] J.E. van Lier, in: D. Kessel (Ed.), Photodynamic Therapy of Neoplastic Diseases,
vol. 1, CRC Press, Boca Raton, FL, 1990.
[8] I. Okura, Photosensitization of Porphyrins and Phthalocyanines, Gordon and
Breach Science Publishers, Amsterdam, 2000.
[9] C.J. Pedersen, The discovery of crown ethers, Angew. Chem. Int. Ed. 27 (1988)
1021–1027.
[10] G.W. Gokel, Crown Ethers and Cryptands, Royal Society of Chemistry, Cam-
bridge, 1991.
[37] H. Du, R.A. Fuh, J. Li, A. Corkan, J.S. Lindsey, PhotochemCAD: A computer-aided
design and research tool in photochemistry, Photochem. Photobiol. 68 (1998)
141–142.
[38] J.H. Brannon, D. Madge, Picosecond laser photophysics. Group 3A phthalocya-
nines, J. Am. Chem. Soc. 102 (1980) 62–65.
[39] A. Ogunsipe, T. Nyokong, Photophysical and photochemical studies of
sulphonated non-transition metal phthalocyanines in aqueous and non-
aqueous media, J. Photochem. Photobiol. A: Chem. 173 (2005) 211–220.
[40] I. Seotsanyana-Mokhosi, N. Kuznetsova, T. Nyokong, Photochemical studies of
tetra-2,3-pyridinoporphyrazines, J. Photochem. Photobiol. A: Chem. 140 (2001)
215–222.
[41] N. Kuznetsova, N. Gretsova, E. Kalmkova, E. Makarova, S. Dashkevich, V. Neg-
rimovskii, O. Kaliya, E. Luk’yanets, Relationship between the photochemical
properties and structure of pophyrins and related compounds, Russ. J. Gen.
Chem. 70 (2000) 133–140.
[42] W. Spiller, H. Kliesch, D. Wohrle, S. Hackbarth, B. Roder, G. Schnurpfeil, Sin-
glet oxygen quantum yields of different photosensitizers in polar solvents and
micellar solutions, J. Porphyr. Phthalocya. 2 (1998) 145–158.
[43] J. Rose, Advanced Physico-chemical Experiments, first edn., Sir Isaac Pitman &
Sons Ltd, London, 1964, p. 257.
[44] A.B. Anderson, T.L. Gorden, M.E. Kenney, Electronic and redox properties of
stacked-ring silicon phthalocyanines from molecular orbital theory, J. Am.
Chem. Soc. 107 (1985) 192–195.
[45] M. Konami, M. Hatano, A. Tajiri, Inter-ring overlap integrals in dimer com-
plexes of phthalocyanines and porphyrins, Chem. Phys. Lett. 166 (1990)
605–608.
[46] H. Weitman, S. Schatz, H.E. Gottlieb, N. Kobayashi, B. Ehrenberg, Spectroscopic
probing of the acid-base properties and photosensitization of a fluorinated
phthalocyanine in organic solutions and liposomes, Photochem. Photobiol. 73
(2001) 473–481.
[47] J. Catalan, C. Diaz, V. Lopez, P. Perez, J.L.G. de Paz, J.G. Rodrinez, A generalized sol-
vent basicity scale: the solvatochromism of 5-nitroindoline and its homomorph
1-methyl-5-nitroindoline, Liebigs Ann. 11 (1996) 1785–1794.
[48] X.F. Zhang, Q. Xi, J. Zhao, Fluorescent and triplet state photoactive J-type
phthalocyanine nano assemblies: controlled formation and photosensitizing
properties, J. Mater. Chem. 20 (2010) 6726–6733.
[49] P.A. Stuzhin, O.G. Khelevina, S. Angeoni, B.D. Berezin, in: C.C. Leznoff, A.B.P.
Lever (Eds.), Phthalocyanines: Properties and Applications, vol. 4, VCH, New
York, 1996.
[11] J.A. Semlyen (Ed.), Large Ring Molecules, Wiley, Chichester, 1996, pp. 43–97.
[12] C.J. Pedersen, Cyclic polyethers and their complexes with metal salts, J. Am.
Chem. Soc. 89 (1967) 2495–2496.
[13] A.R. Koray, V. Ahsen, Ö. Bekarog˘lu, Preparation of a novel, soluble copper
phthalocyanine with crown ether moieties, J. Chem. Soc. Chem. Commun.
(1986) 932–933.
[14] N. Kobayashi, Y. Nishiyama, A copper phthalocyanine with four crown ether
voids, J. Chem. Soc. Chem. Commun. (1986) 1462–1463.
[15] R. Hendriks, O.E. Sielecken, W. Drenth, R.J.M. Nolte, Polytopic ligand systems:
synthesis and complexation properties of a ‘crowned’ phthalocyanine, J. Chem.
Soc. Chem. Commun. (1986) 1464–1465.
[16] N. Kobayashi, M. Togashi, T. Osa, K. Ishii, S. Yamauchi, H. Hino, Low symmetrical
phthalocyanine analogues substituted with three crown ether voids and their
cation-induced supermolecules, J. Am. Chem. Soc. 118 (1996) 1073–1085.
[17] R. O’Kennedy, R.D. Thornes, Coumarins: Biology, Applications and Mode of
Action, John Wiley & Sons Ltd, England, 1997, p. 1–336.
[18] G. Magdalena, B. Elzbieta, Biological activity of metal ions complexes of
chromones, coumarins and flavones, Coord. Chem. Rev. 253 (2009) 2588–2598.
[19] H. An, J.S. Bradshaw, R.M. Izatt, Z. Yan, Bis- and oligo(benzocrown ether)s, Chem.
Rev. 94 (1994) 939–991.
[20] M. Durmus¸ , Z. Bıyıklıog˘lu, H. Kantekin, Synthesis, photophysical and photo-
chemical properties of crown ether substituted zinc phthalocyanines, Synth.
Met. 159 (2009) 1563–1571.
[21] J.W. Steed, First- and second-sphere coordination chemistry of alkali metal
crown ether complexes, Coord. Chem. Rev. 215 (2001) 171–221.
[22] T. Nyokong, Effects of substituents on the photochemical and photophysical
properties of main group metal phthalocyanines, Coord. Chem. Rev. 251 (2007)
1707–1722.
[23] G. Jori, Photosensitised processes in vivo: proposed phototherapeutic applica-
tions, Photochem. Photobiol. 52 (1990) 439–443.
[24] T.J. Dougherty, A brief history of clinical photodynamic therapy development
at Roswell Park Cancer Institute, J. Clin. Laser Med. Surg. 14 (1996) 219–221.
[25] E. Ben-Hur, I. Rosenthal, Photosensitized inactivation of Chinese hamster cells
by phthalocyanines, Photochem. Photobiol. 42 (1985) 129–133.
[26] H. Ali, J.E. van Lier, Metal complexes as photo- and radiosensitizers, Chem. Rev.
99 (1999) 2379–2450.
[27] D. Phillips, The photochemistry of sensitisers for photodynamic therapy, Pure
Appl. Chem. 67 (1995) 117–126.
[28] R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for
photodynamic therapy, Chem. Soc. Rev. 24 (1995) 19–33.
[50] M. Durmus¸ , T. Nyokong, Synthesis and solvent effects on the electronic absorp-
tion and fluorescence spectral properties of substituted zinc phthalocyanines,
Polyhedron 26 (2007) 2767–2776.
[51] M. Durmus¸ , T. Nyokong, Photophysicochemical and fluorescence quenching
studies of benzyloxyphenoxy-substituted zinc phthalocyanines, Spectrochim.
Acta A 69 (2008) 1170–1177.
˙
[52] I. Gürol, M. Durmus¸ , V. Ahsen, T. Nyokong, Synthesis, photophysical and photo-
[29] A.C. Tedesco, J.C.G. Rotta, C.N. Lunardi, Synthesis, photophysical and photo-
chemical aspects of phthalocyanines for photodynamic therapy, Curr. Org.
Chem. 7 (2003) 187–196.
chemical properties of substituted zinc phthalocyanines, Dalton Trans. (2007)
3782–3791.