C O M M U N I C A T I O N S
Table 2. CuCl-Catalyzed Alkyne Substitution Reactions of
33-73% yield (entries 14-16). However, the propargylic amines
having a substituent at the terminal position, such as 1b and N,N-
dicyclohexyl-2-butyn-1-ylamine, did not undergo the alkyne sub-
stitution reaction.
Propargylic Amines with Various Alkynesa
In conclusion, we have found that the substitution reactions of
propargylic amines proceed in the presence of copper(I) catalysts.
As described in the detailed mechanistic discussion in Scheme S2,
C(sp)-C(sp3) bond cleavage assisted by the nitrogen lone-pair
electrons is essential for the reaction, and the resulting iminium
intermediates undergo amine exchange, aldehyde exchange, and
alkyne addition reactions, although the possibility that the mech-
anism proceeds through copper allenylidene complexes14 or pro-
pargylic cation intermediates15,16 generated by C-N bond cleavage
to give the amine-exchanged products cannot be excluded. Because
iminium intermediates are key to aldehyde-alkyne-amine (A3)
coupling reactions,17-19 this transformation is effective not only
for reconstruction of propargylic amines but also for chiral induction
of racemic compounds in the presence of chiral catalysts.
entry
R6
baseb
1
1 or 6
yield (%)c
1d
2d
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Ph
Ph
Ph
nBu3N
1a
1i
1j
1a
1a
1i
1a
1i
1a
1a
1a
1a
1a
1k
1l
1b
6a
6b
6c
6d
6e
6f
6g
6h
6i
6j
6k
6l
6m
6n
6o
74
83
47
44
48
61
58
53
58
44
63
40
42
73
33
39
Na2HPO4
nBu3N
4-biphenyl
4-CH3C6H4
4-CH3C6H4
4-CH3OC6H4
4-CH3OC6H4
2-(6-CH3O)Naph
4-(CH3)2NC6H4
4-CF3C6H4
Ph(CH3)C(OH)
EtO2C
nOct3N
Na2HPO4
Na2HPO4
nBu3N
Na2HPO4
nOct3N
nOct3N
Na2HPO4
Acknowledgment. This work was supported by a Grant-in-Aid
for Scientific Research on Priority Areas “Advanced Molecular
Transformations of Carbon Resources” from the Ministry of
Education, Culture, Sports, Science, and Technology, Japan.
nBu3N
Na2HPO4
Na2HPO4
nOct3N
Ph
Ph
4-CH3OC6H4
Na2HPO4
1k
Supporting Information Available: Experimental data. This ma-
a The reaction of propargylic amines 1 (0.3 mmol) with alkynes 7
(0.9 mmol) was carried out in the presence of CuCl (0.06 mmol) in
THF (1.2 mL) at 100 °C under an Ar atmosphere using a vial tube.
b The amount of each base used in the reaction was as follows:
Na2HPO4 (1.2 mmol); nBu3N (0.3 mmol); nOct3N (0.15 mmol).
c Isolated yields based on 1. d Using 5 equiv of phenylacetylene.
References
(1) March, J. AdVanced Organic Chemistry, 4th ed.; Wiley: New York, 1992;
p 357.
(2) (a) De Vargas, E. B.; De Rossi, R. H.; Veglia, A. V. J. Org. Chem. 1986,
51, 1976. (b) Bujan, E. I.; Remedi, M. V.; Rossi, R. H. J. Chem. Soc.,
Perkin Trans. 2 2000, 969.
(3) (a) Murahashi, S.-I.; Imada, Y.; Nishimura, K. J. Chem. Soc., Chem.
Commun. 1988, 1578, 1579. (b) Murahashi, S.-I.; Imada, Y.; Nishimura,
K. Tetrahedron 1994, 50, 453.
bond cleavage at the propargylic position (1 f 4 in eq 2). Thus,
we next investigated the alkyne substitution reaction of propargylic
amines with additional alkynes 7.
The results of the alkyne substitution reaction are summarized
in Table 2. The reaction of 1a with phenylacetylene proceeded in
the presence of CuCl (20 mol %) and tributylamine to produce 1b
in 74% yield (entry 1). Propargylic amine 1b was obtained in 11%
yield in the absence of base (Table S3 in the SI), suggesting that
addition of base is essential for this alkyne substitution reaction.
Among the copper(I) catalysts examined, CuCl gave the best yield
(Table S4). In the case of N,N-dihexylpropargylamine (1i), using
Na2HPO4 as the base was more effective, and the corresponding
propargylic amine 6a was obtained in 83% yield (entry 2). Although
other bases, such as tributylamine and trioctylamine, were also
effective, the choice of base strongly depended on the ease of
separation between these trialkylamines and the products. A variety
of alkynes 7, such as 4-biphenylacetylene, 4-tolylacetylene, 4-meth-
oxyphenylacetylene, 6-methoxy-2-naphthylacetylene, 4-(N,N-dim-
ethylamino)phenylacetylene, and 4-tolacetylene, and various pro-
pargylic amines, including 1a and 1i-l, were employed in the
alkyne substitution reaction to afford the corresponding propargylic
amines (6b-j) in moderate to good yields (entries 3-11). The
alkyne substitution reaction was also applied to alkynyl alcohol
and ester. The reactions of 1a with 2-phenyl-3-butyn-2-ol and ethyl
propiolate gave 6k and 6l in 40 and 42% yield, respectively (entries
12 and 13). The propargylic amines 1k and 1l, which have a
substituent at the propargylic position, also underwent the alkyne
substitution reaction with phenylacetylene and 4-methoxypheny-
lacetylene to give the corresponding propargylic amines 6m-o in
(4) Spears, G. W.; Nakanishi, K.; Ohfune, Y. Synlett 1991, 91.
(5) (a) Garro-Helion, F.; Merzouk, A.; Guibe, F. J. Org. Chem. 1993, 58, 6109.
(b) Mitsudo, T.-a.; Zhang, S.-W.; Satake, N.; Kondo, T.; Watanabe, Y.
Tetrahedron Lett. 1992, 33, 5533. (c) Honda, M.; Morita, H.; Nagakura, I.
J. Org. Chem. 1997, 62, 8932. (d) Lemaire-Audoire, S.; Savignac, M.;
Geneˆt, J. P.; Bernard, J.-M. Tetrahedron Lett. 1995, 36, 1267.
(6) Murahashi, S.; Hirano, T.; Yano, T. J. Am. Chem. Soc. 1978, 100, 348.
(7) Cho, C. S.; Oh, B. H.; Kim, J. S.; Kim, T.-J.; Shim, S. C. Chem. Commun.
2000, 1885.
(8) (a) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc.
2003, 125, 15312. (b) Murahashi, S. I.; Komiya, N.; Terai, H. Angew.
Chem., Int. Ed. 2005, 44, 6931.
(9) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
(10) (a) Wei, C.; Li, C. J. J. Am. Chem. Soc. 2002, 124, 5638. (b) Li, Z.; Li,
C. J. J. Am. Chem. Soc. 2004, 126, 11810.
(11) Li, Z.; Bohle, D. S.; Li, C. J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
8928.
(12) (a) Nakamura, H.; Kamakura, T.; Ishikura, M.; Biellmann, J.-F. J. Am.
Chem. Soc. 2004, 126, 5958. (b) Nakamura, H.; Onagi, S.; Kamakura, T.
J. Org. Chem. 2005, 70, 2357. (c) Nakamura, H.; Tashiro, S.; Kamakura,
T. Tetrahedron Lett. 2005, 46, 8333. (d) Nakamura, H.; Ishikura, M.;
Sugiishi, T.; Kamakura, T.; Biellmann, J. F. Org. Biomol. Chem. 2008, 6,
1471.
(13) Nakamura, H.; Kamakura, T.; Onagi, S. Org. Lett. 2006, 8, 2095.
(14) Detz, R. J.; Delville, M. M. E.; Hiemstra, H.; Maarseveen, J. H. Angew.
Chem., Int. Ed. 2008, 47, 3777.
(15) Hattori, G.; Matsuzawa, H.; Miyake, Y.; Nishibayashi, Y. Angew. Chem.,
Int. Ed. 2008, 47, 3781.
(16) Lee, K. Y.; Lee, H. S.; Kim, H. S.; Kim, J. N. Bull. Korean Chem. Soc.
2008, 29, 1441.
(17) Leonard, N. J.; Leubner, G. W. J. Am. Chem. Soc. 1949, 71, 3408.
(18) (a) Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584. (b) Wei, C.; Li,
Z.; Li, C. J. Synlett 2004, 1472.
(19) Gommermann, N.; Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem.,
Int. Ed. 2003, 42, 5763.
JA9109055
9
J. AM. CHEM. SOC. VOL. 132, NO. 15, 2010 5333