2018
Russ. Chem. Bull., Int. Ed., Vol. 68, No. 11, November, 2019
Shmukler et al.
20. J. Stoimenovski, E. I. Izgorodina, D. R. MacFarlane, Phys.
Chem. Chem. Phys., 2010, 12, 10341.
21. A. T. Nasrabadi, L. D. Gelb, J. Phys. Chem. B, 2018, 122, 5961.
22. M. Sh. Miran, H. Kinoshita, T. Yasuda, Md. A. B. H. Susan,
M. Watanabe, Phys. Chem. Chem. Phys., 2012, 14, 5178.
23. M. Yoshizawa, W. Xu, C. A. Angell, J. Am. Chem. Soc., 2003,
125, 15411.
24. M. Shen, Y. Zhang, K. Chen, S. Che, J. Yao, H. Li, J. Phys.
Chem. B, 2017, 121, 1372.
25. S. K. Davidowski, F. Thompson, W. Huang, M. Hasani, S. A.
Amin, C. A. Angell, J. L. Yarger, J. Phys. Chem. B, 2016,
120, 4279.
26. G. L. Burrell, I. M. Burgar, F. Separovic, N. F. Dunlop, Phys.
Chem. Chem. Phys., 2010, 12, 1571.
27. P. K. Chhotaray, R. L. Gardas, J. Chem. Thermodynamics,
2014, 72, 117.
28. N. N. Chipanina, T. N. Aksamentova, S. N. Adamovich,
A. I. Albanov, A. N. Mirskova, R. G. Mirskov, M. G.
Voronkov, Comp. Theor. Chem., 2012, 985, 36.
29. D. N. R. Thummuru, B. S. Mallik, J. Phys. Chem. A, 2017,
121, 8097.
30. R. Ludwig, J. Phys. Chem. B, 2009, 113, 15419.
31. I. V. Fedorova, M. A. Krestyaninov, L. P. Safonova, J. Phys.
Chem. A, 2017, 121, 7675.
distorted hydrogen bonds of medium strength in the
DEA/OMs(HSO4) ion pairs produces PILs. On the whole,
a tendency to increasing the temperature of decomposition
onset of the samples with an increase in pKa is observed.
The obtained electrical conductivity values of the synthe-
sized compounds, except for DEA/OTf, range from 10–3
to 10–1 Ohm–1 cm–1 depending on the temperature and
anion. The experimental results are consistent with the
data of quantum chemical computations.
The DSC, TG, and NMR studies and impedance
measurements were carried out using the equipment of
the centre for joint use of scientific equipment "The Upper
Volga Region Centre for Physicochemical Research."
This work was financially supported in part by the
Russian Foundation for Basic Research (Project No. 19-
03-00505).
References
1. B. A. Marekha, M. Bria, M. Moreau, I. DeWaele, F.-A.
Miannay, Y. Smortsova, T. Takamuku, O. N. Kalugin,
M. Kiselev, A. Idrissi, J. Mol. Liq., 2015, 210, 227.
2. H. Watanabe, H. Doi, S. Saito, M. Matsugami, K. Fujii,
R. Kanzaki, Y. Kameda, Y. Umebayashi, J. Mol. Liq., 2016,
217, 35.
3. A. Yethiraj, J. Phys.: Condens. Matter, 2016, 28, 414020.
4. G. V. Lisichkin, A. Yu. Olenin, Russ. Chem. Bull., 2018,
67, 949.
32. I. V. Fedorova, L. P. Safonova, J. Phys. Chem. A, 2019,
123, 293.
33. I. V. Fedorova, L. P. Safonova, J. Phys. Chem. A, 2018,
122, 5878.
34. CRC Handbook of Chemistry and Physics, 95th ed., Ed. W. M.
Haynes, CRC Press, 2014, 2704 pp.
35. C. Iojoiu, P. Judeinstein, J.-Y. Sanchez, Electrochim. Acta,
2007, 53, 1395.
5. V. G. Krasovskiy, E. A. Chernikova, L. M. Glukhov, G. I.
Kapustin, A. A. Koroteev, L. M. Kustov, Russ. Chem. Bull.,
2018, 67, 1621.
36. V. Govinda, P. Attri, P. Venkatesu, P. Venkateswarlu, Fluid
Phase Equilib., 2011, 304, 35.
37. T. Kavitha, P. Attri, P. Venkatesu, R. S. Rama Devi, T. Hofman,
J. Chem. Thermodyn., 2012, 54, 223.
6. N. Bicak, J. Mol. Liq., 2005, 116, 15.
7. J. P. Hallett, T. Welton, Chem. Rev., 2011, 111, 3508.
8. S. A. Shamsi, N. D. Danielson, J. Sep. Sci., 2007, 30, 1729.
9. S. N. Adamovich, R. G. Mirskov, A. N. Mirskova, M. G.
Voronkov, Russ. Chem. Bull., 2012, 61, 1260.
10. H. Nakamoto, M. Watanabe, Chem. Commun., 2007, 43, 2539.
11. M. Martinez, C. Iojoiu, P. Judeinstein, L. Cointeaux, J.-C.
Lepretre, J.-Y. Sanchez, ECS Trans., 2009, 25, 1647.
12. J.-Ph. Belieres, C. A. Angell, J. Phys. Chem. B, 2007,
111, 4926.
13. J. L. Lebga-Nebane, S. E. Rock, J. Franclemont, D. Roy,
S. Krishnan, Ind. Eng. Chem. Res., 2012, 51, 14084.
14. Md. A. B. H. Susan, A. Noda, S. Mitsushima, M. Watanabe,
Chem. Commun., 2003, 8, 938.
15. M. Mamlouk, P. Ocon, K. Scott, J. Power Sources, 2014,
245, 915.
16. M. Martinez, Y. Molmeret, L. Cointeaux, C. Iojoiu, J.-C.
Lepretre, N. El Kissi, P. Judeinstein, J.-Y. Sanchez, J. Power
Sources, 2010, 195, 5829.
17. C. Iojoiu, M. Hana, Y. Molmeret, M. Martinez, L. Cointeaux,
N. El Kissi, J. Teles, J.-C. Leprêtre, P. Judeinstein, J.-Y.
Sanchez, Fuel Cells, 2010, 10, 778.
18. A. J. Cruz-Cabeza, CrystEngComm, 2012, 14, 6362.
19. J. E. S. J. Reid, C. E. S. Bernardes, F. Agapito, F. Martins,
S. Shimizu, M. E. Minas da Piedade, A. J. Walker, Phys.
Chem. Chem. Phys., 2017, 19, 28133.
38. R. Umapathi, P. Attri, P. Venkatesu, J. Phys. Chem. B, 2014,
118, 5971.
39. V. Govinda, P. Venkatesu, I. Bahadur, Phys. Chem. Chem.
Phys., 2016, 18, 8278.
40. J. Barthel, F. Feuerlein, R. Neueder, R. Wachter, J. Solution
Chem., 1980, 9, 209.
41. F. Jensen, Introduction to Computational Chemistry, 2nd ed.,
John Wiley and Sons, Ltd, Chichester, 2007, 620 pp.
42. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
43. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B., 1988, 37, 785.
44. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys.,
2010, 132, 154104.
45. R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys., 1971,
54, 724.
46. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, Jr.,
F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin,
V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi,
N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,