1742
C. Schmeck et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1740–1743
Table 3
IC50 data from CETP fluorescence assay in human plasma and from CETP SPA assay for
compounds 11a–d and 12
OH
R2
OH
O
OH
a
Human plasma assay12b
IC50 (nM)
SPA assay12c
IC50 (nM)
R2
Compds
CF3
CF3
CF3
CF3
N
X
CF3
N
X
7 i-l
8 a, b
1
20
75
50
70
60
3
23
7
33
62
n.a.
11a
11b
11c
11d
12
c
b
300
O
OSiMe2tBu
X
OH
R2
OSiMe2tBu
X
d
R2
CF3
N
N
9
10
duction of the fluorine atom in 11a–d increased both lipophilicity
and CETP inhibitory activity. Activity as well as lipophilicity of the
defluorinated compound 12 is in the range of 11a–d (Table 2).
Additional in vitro tests were performed with compounds 11a–
d and 12 showing the best overall in vitro profile for compound
11b (Table 3).
The pharmacokinetic profile of 11b was assessed in mice, rats
and dogs revealing good plasma half-lives (t1/2 = 5.0, 7.2 and
8.6 h, respectively) and oral bioavailability (F = 44% in rats and
74% in dogs).
In conclusion, we successfully modified the structure of our pre-
vious development compounds 4 and 5 by replacing the pF-phenyl
moiety with a cyclohexyl group in the 4-position. With its good
overall in vitro profile and the favourable pharmacokinetic profile,
11b improved the lipoprotein profile in human CETP-transgenic
mice by increasing HDL-cholesterol and lowering serum triglycer-
ides dose dependently.15 Consequently, 11b was selected for
advancement as a clinical candidate.
g
e
OH
OH
F
OH
X
R2
R2
CF3
N
X
N
11 a-d
8 c, d
f
OH
R2
N
X
12
Scheme 2. Synthesis of alcohols 8–12. Reagents and conditions: (a) 5 equiv DIBAL,
toluene, À78 °C to rt, 18 h, 70–80%; (b) 7 equiv TBDMSCl, 2.5 equiv DMAP, 6 equiv
NEt3, acetonitrile, rt, 18 h, 79%; (c) 2 equiv TBDMSOTf, 4 equiv 2,6-dimethylpyri-
dine, toluene, À15 to 0 °C, 2 h, 78–99%; (d) 5 equiv DIBAL, toluene, À50 °C to rt, 3 h,
30–40%; (e) (i) 1.5 equiv DAST, CH2Cl2, , À78 °C to rt, 2 h, 82–95%; (ii) 2.5 equiv
TBAF, THF, 0 °C to rt, 18 h, 65–91%; (f) 7 equiv DIBAL, toluene, À20 to 0 °C, 4 h, 80%
and (g) 2.5 equiv TBAF, THF, 0 °C to rt, 18 h, 78–95%.
Acknowledgements
We thank Dr. Rolf Grosser and his lab for HPLC support and Dr.
Holger Paulsen and his lab for synthesis of starting materials and
their up scaling efforts. We thank Dr. Delf Schmidt for assay
development.
uene at low temperatures followed by a non selective reduction
with DIBAL in toluene to afford 10c–d. Enantioselective fluorina-
tion with diethylaminosulfur trifluoride (DAST) in dichlorometh-
ane at low temperatures occurred with complete retention of the
configuration. In contrast to the usual SN2 pathway of DAST-fluori-
nations the reaction proceeds with retention of configuration at
this sterically highly encumbered site. Similar fluorinations follow-
ing a SNi-mechanism have been reported in the literature.14 Re-
moval of the protecting group proceeded cleanly with TBAF in
THF yielding 8c–d and 11a–d. Reductive defluorination of 11b with
a high excess of DIBAL in toluene afforded 12 (Scheme 2).
References and notes
1. Yusuf, S.; Reddy, S.; Ounpuu, S.; Anand, S. Circulation 2001, 104, 2746.
2. Third Report of the National Cholesterol Education Program (NCEP) Expert
Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in
Adults 1. (Adult Treatment Panel III) final report Circulation 2002, 106, 3143–
3421.
3. Grundy, S. M.; Cleeman, J. I.; Merz, C. N.; Brewer, H. B.; Clark, L. T.;
Hunninghake, D. B.; Pasternak, R. C.; Smith, S. C.; Stone, N. J. Circulation 2004,
110, 227 [Erratum: Circulation 2004, 110, 763].
4. (a) Gordon, T.; Castelli, W. P.; Hjortland, M. C.; Kannel, W. B.; Dawber, T. R. Curr.
Med. Res. Opin. 2004, 20, 1253–1268. and references cited therein; (b) Assmann,
G.; Schulte, H.; von Eckardstein, A.; Huang, Y. Atherosclerosis 1996, 124, S11–
S20; (c) Linsel-Nitschke, P.; Tall, A. R. Nat. Rev. Drug. Disc. 2005, 4, 193
[Erratum: Nat. Rev. Drug. Disc. 2005, 4, 648].
5. De Grooth, G. J.; Klerkx, A. H. E. M.; Stroes, E. S. G.; Stalenhoef, A. F. H.;
Kastelein, J. J. P.; Kuivenhoven, J. A. J. Lipid Res. 2004, 45, 1964–1974.
6. (a) Barter, P. J.; Caulfield, M.; Eriksson, M.; Grundy, S. M.; Kastelein, J. J. P.;
Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.; Waters, D. D.; Shear, C. L.;
Revkin, J. H.; Buhr, K. A.; Fisher, M. R.; Tall, A. R.; Brewer, B. N. Eng. J. Med. 2007,
357, 2109; (b) Nissen, S. E.; Tardif, J. C.; Nicholls, S. J.; Revkin, J. H.; Shear, C. L.;
Duggan, W. T.; Ruzyllo, W.; Bachinsky, W. B.; Lasala, G. P.; Tuzcu, E. M. N. Eng. J.
Med. 2007, 356, 1304.
The increase in polarity of the trans-dihydroxy compounds 8 led
to a slight loss in activity compared to 7. On the other hand intro-
Table 2
IC50 data from CETP fluorescence assay for compounds 8a–d, 11a–d and 12
Compds
R2
=
X =
IC50 (nM)
clog P13
7. (a) Joy, T.; Hegele, R. A. Curr. Opin. Cardiol. 2009, 24, 364; (b) Neeli, H.; Rader, D.
J. Cardiol. Clin. 2008, 26, 537.
8a
8b
8c
8d
11a
11b
11c
11d
12
iPr
cPent
iPr
cPent
iPr
cPent
iPr
Dimethyl
Dimethyl
Spirocyclobutyl
Spirocyclobutyl
Dimethyl
80
100
70
100
30
25
17
22
39
6.76
7.39
6.59
7.23
8.14
8.77
7.97
8.61
9.15
8. (a) De Grooth, G. J.; Kuivenhoven, J. A.; Stalenhoef, A. F.; De Graaf, J.;
Zwinderman, A. H.; Posma, J. L.; Van Tol, A.; Kastelein, J. J. P. Circulation 2002,
105, 2159; (b) Stein, E. A.; Stroes, E. S. G.; Steiner, G.; Buckley, B. M.; Phild, D.;
Capponi, A. M.; Burgess, T.; Niesor, E. J.; Kallend, D.; Kastelein, J. J. P. Am. J.
Cardiol. 2009, 104, 82.
9. Cannon, C. P.; Dansky, H. M.; Davidson, M.; Gotto, A. M., Jr.; Brinton, E. A.;
Gould, A. L.; Stepanavage, M.; Liu, S. X.; Shah, S.; Rubino, J.; Gibbons, P.;
Hermanowski-Vosatka, A.; Binkowitz, B.; Mitchel, Y.; Barter, P. Am. Heart J.
2009, 158, 513.
Dimethyl
Spirocyclobutyl
Spirocyclobutyl
Dimethyl
cPent
cPent