T. Terauchi et al. / Tetrahedron Letters 51 (2010) 1497–1499
1499
PhCO2H
30% H2O2
NaHCO3
KF
DIC
O
O
DMAP
NH2
HO
N
H
N
H
Si
Si
THF-MeOH
CH2Cl2
3 h
4
5
3a
60 ºC / 12 h
84% over all yield
Scheme 2.
5. (a) Hsu, K.-L.; Pilobello, K. T.; Mahal, L. K. Nat. Chem. Biol. 2006, 2, 153–157; (b)
Lee, M.-r.; Park, S.; Shin, I. Bioorg. Med. Chem. Lett. 2006, 16, 5132–5135.
6. (a) Park, S.; Lee, M.-r.; Shin, I. Chem. Commun. 2008, 4389–4399; (b) Horlacher,
T.; Seeberger, P. H. Chem. Soc. Rev. 2008, 37, 1414–1422.
7. (a) MacBeath, G.; Koehler, A. N.; Schreiber, S. L. J. Am. Chem. Soc. 1999, 121,
7967–7968; (b) Hergenrother, P. J.; Depew, K. M.; Schreiber, S. L. J. Am. Chem.
Soc. 2000, 122, 7849–7850; (c) He, X. G.; Gerona-Navarro, G.; Jaffrey, S. R. J.
Pharmacol. Exp. Ther. 2005, 313, 1–7.
We next attempted to apply this method for solid-phase synthe-
sis in the case of silica resin (Scheme 2). Commercially available 3-
aminopropyl-functionalized silica gel 4 (Sigma–Aldrich, si-amine,
loading: 1.08 mmol/g) was treated with benzoic acid, as in the prep-
aration of 2a, to produce benzamide 5. Finally, the desired alcohol 3a
was obtained in 84% yield based on starting resin 4, along with resid-
ual 5, using the above oxidative cleavage conditions.
8. Gude, M.; Ryf, J.; White, P. D. Lett. Pept. Sci. 2002, 9,
203–206.
9. (a) Kaiser, E.; Colescott, R. L.; Bassinger, C. D.; Cook, P. I. Anal. Biochem. 1970, 34,
595–598; (b) Hancock, W. S.; Battersby, J. E. Anal. Biochem. 1976, 71, 260–264;
(c) Vojkovsky, T. Pept. Res. 1995, 8, 236–237; (d) Attardi, M. E.; Porcu, G.;
Taddei, M. Tetrahedron Lett. 2000, 41, 7391–7394; (e) Vázquez, J.; Albericio, F.
Tetrahedron Lett. 2001, 42, 6691–6693; (f) Komba, S.; Sasaki, S.; Machida, S.
Tetrahedron Lett. 2007, 48, 2075–2078.
In conclusion, we have demonstrated that functionalized mole-
cules connected through silicon–carbon bonds to glass plates or
silica resin can be efficiently cleaved by a new method based on
a Tamao–Kumada oxidation reaction. The approach described here
does not require special structures to be incorporated into the lin-
ker to permit its cleavage, and the resulting terminal hydroxyl
group is stable, convertible, and manageable. Thus, this approach
should prove effective for applications in solid-phase syntheses.
10. For example, see: Guillier, F.; Orain, D.; Bradley, M. Chem. Rev. 2000, 100, 2091–
2157.
11. (a) Smith, E. M. Tetrahedron Lett. 1999, 40, 3285–3288; (b) Doi, T.; Sugiki, M.;
Yamada, H.; Takahashi, T.; Porco, J. A., Jr. Tetrahedron Lett. 1999, 40, 2141–2144.
12. (a) Hu, Y.; Porco, J. A., Jr.; Labadie, J. W.; Gooding, O. W. J. Org. Chem. 1998, 63,
4518–4521; (b) Hone, N. D.; Davies, S. G.; Devereux, N. J.; Taylor, S. L.; Baxter,
A. D. Tetrahedron Lett. 1998, 39, 897–900; (c) Brown, S. D.; Armstrong, R. W. J.
Org. Chem. 1997, 62, 7076–7077; (d) Newlander, K. A.; Chenera, B.; Veber, D. F.;
Yim, N. C. F.; Moor, M. L. J. Org. Chem. 1997, 62, 6726–6732; (e) Plunkett, M. J.;
Ellman, J. A. J. Org. Chem. 1997, 62, 2885–2893; (f) Schuster, M.; Lucas, N.;
Blechert, S. Chem. Commun. 1997, 823–824; (g) Chenera, B.; Finkelstein, J. A.;
Veber, D. F. J. Am. Chem. Soc. 1995, 117, 11999–12000; (h) Plunkett, M. J.;
Ellman, J. A. J. Org. Chem. 1995, 60, 6006–6007.
13. Woolard, F. X.; Paetsch, J.; Ellman, J. A. J. Org. Chem. 1997, 62, 6102–6103. see
also Ref. 12a.
14. See Ref. 12g.
15. Han, Y.; Walker, S. D.; Young, R. N. Tetrahedron Lett. 1996, 37, 2703–2706. see
also Ref. 12e.
Acknowledgments
This work was supported by the Program for the Promotion of
Basic Research Activities in Innovative Bioscience (PROBRAIN)
and by the Precursory Research for Embryonic Science and Tech-
nology (PRESTO) program. We thank Dr. H. Ono and his staff for
NMR measurements, and Dr. M. Kameyama and her staff for ESI-
FT-MS measurements. In addition, we also thank K. Yuhara for
technical assistance.
16. Tamao, K.; Ishida, N.; Tanaka, T.; Kumada, M. Organometallics 1983, 2, 1694–
1696; Jones, G. R.; Landais, Y. Tetrahedron 1996, 52, 7599–7662.
17. Commercially available aminopropylated glass slides were found to have lower
loading levels than those required for our purpose, so we independently
fabricated them by the aminopropylation of unmodified porous glass slides.
Our protocol for this was based on the results of an examination of the
immobilization conditions with a selection of materials. For an example of a
similar aminoalkylation protocol, see Ref. 4a.
Supplementary data
Supplementary data associated with this article can be found, in
18. A typical procedure for the oxidative cleavage was as follows. The following
References and notes
were added to modified glass 2a (438 mg of a glass plate, 12.3
l
mol, amino-
l), saturated aqueous
l), and 30% aqueous H2O2
loading: 28.2
NaHCO3 (877
l
mol/g): THF (877
ll), MeOH (877 l
1. (a) Fodor, S. P. A.; Read, J. L.; Pirrung, M. C.; Stryer, L.; Lu, A. T.; Solas, D. Science
1991, 251, 767–773; (b) Pease, A. C.; Solas, D.; Sullivan, E. J.; Cronin, M. T.;
Holmes, C. P.; Fodor, S. P. A. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 5022–5026; (c)
Singh-Gasson, S.; Green, R. D.; Yue, Y.; Nelson, C.; Blattner, F.; Sussman, M. R.;
Cerrina, F. Nat. Biotechnol. 1999, 17, 974–978.
2. (a) Angenendt, P.; Glökler, J.; Murphy, D.; Lehrach, H.; Cahill, D. J. Anal. Biochem.
2002, 309, 253–260; (b) Angenendt, P.; Glökler, J.; Sobek, J.; Lehrach, H.; Cahill,
D. J. J. Chromatogr., A 2003, 1009, 97–104.
3. (a) MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760–1763; (b) Rusmini, F.;
Zhong, Z.; Feijen, J. Biomacromolecules 2007, 8, 1775–1789.
4. (a) Falsey, J. R.; Renil, M.; Park, S.; Li, S.; Lam, K. S. Bioconjugate Chem. 2001, 12,
346–353; (b) Panicker, R. C.; Huang, X.; Yao, S. Q. Comb. Chem. High Throughput
Screening 2004, 7, 547–556. see also Ref. 1a.
l
l), saturated aqueous KF (877
l
(877 ll). After warming at 60 °C for 12 h, the reaction mixture was allowed to
cool to room temperature and then diluted with water (10 ml). The resulting
mixture was extracted with EtOAc (2 Â 5 ml), and the combined organic
phases were concentrated and dried in vacuo to yield a slurry (2.46 mg). The
crude product was purified by reversed-phase HPLC to produce 3a (2.12 mg,
95.5% from 1) as a colorless oil.
19. In order to assess the stability of 3e to the oxidative conditions, we subjected it
to several oxidative or basic conditions, including those of entries 21 and 23 in
Table 1, in the liquid phase. Partial Fmoc cleavage was observed in most cases;
an increase in basicity or temperature-accelerated Fmoc cleavage, while the
presence of KF or H2O2 had hardly any influence.