JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY DOI 10.1002/POLA
Chiang, C. L.; Teng, C. C.; Yu, Y. H. J Polym Sci Part A: Polym
Chem 2008, 46, 803–816.
coatings was less than 0.5% in the visible range (400 nm to
700 nm), which was significantly smaller than that of the
glass with 4.4%. It suggested the potential application of the
prepared PI–titania hybrid films in optical devices.
4 Althues, H.; Henle, J.; Kaskel, S. Chem Soc Rev 2007, 36,
1454–1465.
5 (a) Chen, W. C.; Lee, S. J.; Lee, L. H.; Lin, J. L. J Mater Chem
1999, 9, 2999–3003; (b) Lee, L. H.; Chen, W. C. Chem Mater
2001, 13, 1137–1142; (c) Yuwono, A. H.; Zhang, Y.; Wang, J.;
Zhang, X. H.; Fan, H.; Ji, W. Chem Mater 2006, 18, 5876–5889.
CONCLUSIONS
Two series of novel soluble PIs were synthesized from the
hydroxy-substituted diamines with various commercial tetra-
carboxylic dianhydrides, respectively. Furthermore, high
transparency and tunable refractive index PI–titania hybrid
optical films were successfully synthesized from soluble
hydroxyl-substituted PIs with titanium butoxide by control-
ling the organic/inorganic mole ratio. The refractive index of
hybrid thin films revealed good surface planarity, high ther-
mal stability, tunable refractive index, and high optical trans-
parency in the visible range. Three-layer antireflective coat-
ing based on the hybrid films possessed reflectance of less
than 0.5% in the visible range, suggesting potential optical
applications of the novel PI–titania hybrid optical films. Fur-
thermore, the thick titania hybrid films could also be
achieved even with the relatively high titania content (50
wt %) and refractive index (1.92). To the best of our
knowledge, the refractive index and titania content were the
highest among the polymer–titania hybrid optical thick films
(20–30 lm in thickness).
6 (a) Nandi, M.; Conklin, J. A.; Salvati, L.; Sen, A. Chem Mater
1991, 3, 201–206; (b) Chang, C. C.; Chen, W. C. J Polym Sci
Part A: Polym Chem 2001, 39, 3419–3427; (c) Guevel, X. L.;
Palazzesi, C.; Prosposito, P.; Giustina, G. D.; Brusatin, G.
J Mater Chem 2008, 18, 3556–3562.
7 Su, H. W.; Chen, W. C. J Mater Chem 2008, 18, 1139–1145.
8 (a) Wang, B.; Wilkes, G. L.; Hedrick, J. C.; Liptak, S. C.;
McGrath, J. E. Macromolecules 1991, 24, 3449–3450; (b) Chen,
W. C.; Lee, L. H.; Chen, B. F.; Yen, C. T. J Mater Chem 2002, 12,
3644–3648; (c) Lu, S. R.; Zhang, H. L.; Zhao, C. X.; Wang, X. Y.
Polymer 2005, 46, 10484–10492; (d) Liu, J. G.; Ueda, M. J Mater
Chem 2009, 19, 8907–8919; (e) Vestberg, R.; Piekarski, A. M.;
Pressly, E. D.; Berkel, K. Y. V.; Malkoch, M.; Gerbac, J.; Ueno,
N.; Hawker, C. J. J Polym Sci Part A: Polym Chem 2009, 47,
1237–1258.
9 Liu, J. G.; Nakamura, Y.; Ogura, T.; Shibasaki, Y.; Ando, S.;
Ueda, M. Chem Mater 2008, 20, 273–281.
The authors are grateful to the National Science Council of the
Republic of China for financial support of this work.
10 Kawasaki, S.; Yamada, M.; Kobori, K.; Jin, F.; Kondo, Y.;
Hayashi, H.; Suzuki, Y.; Takata, T. Macromolecules 2007, 40,
5284–5289.
REFERENCES AND NOTES
11 (a) Liu, J. G.; Nakamura, Y.; Shibasaki, Y.; Ando, S.; Ueda,
M. Macromolecules 2007, 40, 4614–4620; (b) Liu, J. G.; Naka-
mura, Y.; Suzuki, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Macro-
molecules 2007, 40, 7902–7909; (c) You, N. H.; Suzuki, Y.;
Yorifuji, D.; Ando, S.; Ueda, M. Macromolecules 2008, 41,
6361–6366.
1 (a) Beecroft, L. L.; Ober, C. K. Chem Mater 1997, 9,
1302–1317; (b) Sanchez, C.; Lebeau, B.; Chaput, F.; Boilot, J. P.
Adv Mater 2003, 15, 1969–1994; (c) Laine, R. M. J Mater Chem
2005, 15, 3725–3744; (d) Zelcer, A.; Donnio, B.; Bourgogne, C.;
Cukiernik, F. D.; Guillon, D. Chem Mater 2007, 19, 1992–2006;
(e) Zhou, Z.; Franz, A. W.; Hartmann, M.; Seifert, A.; Muller, T.
J. J.; Thiel, W. R. Chem Mater 2008, 20, 4986–4991; (f) Pereira,
F.; Valle, K.; Belleville, P.; Morin, A.; Lambert, S.; Sanchez, C.
Chem Mater 2008, 20, 1710–1718; (g) Lin, Y. Y.; Chen, C. W.;
Chu, T. H.; Su, W. F.; Lin, C. C.; Ku, C. H.; Wu, J. J.; Chen, C. H.
J Mater Chem 2007, 17, 4571–4576.
12 Imai, Y.; Park, K. H.; Kakimoto, M. A. J Polym Sci Part A:
Polym Chem 1998, 36, 1987–1994.
13 Chern, Y. T. U.S. Patent 20,060,241,187, 2006.
14 Likhatchev, D.; Gutierrez-Wing, C.; Kardash, I.; Vera-Gra-
ziano, R. J Appl Polym Sci 1996, 59, 725–735.
2 (a) Functional Hybrid Materials; Gomez-Romero, P.; Sanchez,
C., Eds.; Wiley-VCH: Weinheim, 2004; (b) Kickelbick, G. Hybrid
Materials: Synthesis, Characterization, and Applications; Wiley-
VCH: Weinheim, 2007.
15 (a) Yuwono, A. H.; Xue, J.; Wang, J.; Elim, H. I.; Ji, W.; Li,
Y.; White, T. J. J Mater Chem 2003, 13, 1475–1479; (b) Yuwono,
A. H.; Liu, B.; Xue, J.; Wang, J.; Elim, H. I.; Ji, W.; Li, Y.; White,
T. J. J Mater Chem 2004, 14, 2978–2987.
3 (a) Li, T. L.; Hsu, S. L. C. J Polym Sci Part A: Polym Chem
2009, 47, 1575–1583; (b) Ye, Y. S.; Yen, Y. C.; Chen, W. Y.;
Cheng, C. C.; Chang, F. C. J Polym Sci Part A: Polym Chem
2008, 46, 6296–6304; (c) Wahab, M. A.; Mya, K. Y.; He, C. J
Polym Sci Part A: Polym Chem 2008, 46, 5887–5896; (d) Liu, Y.
L.; Tseng, M. C.; Fangchiang, M. H. J Polym Sci Part A: Polym
Chem 2008, 46, 5157–5166; (e) Yuen, S. M.; Ma, C. C. M.;
16 (a) Eder, D.; Windle, A. H.
J
Mater Chem 2008, 18,
Mater Chem 2008, 18,
2036–2043; (b) Miyauchi, M.
J
1858–1864; (c) Yu, A.; Lu, G. Q.; Drennan, J.; Gentle, I. R. Adv
Funct Mater 2007, 17, 2600–2605; (d) Fattakhova-Rohlfing, D.;
Wark, M.; Brezesinski, T.; Smarsly, B. M.; Rathousky, J. Adv
Funct Mater 2007, 17, 123–132.
1440
INTERSCIENCE.WILEY.COM/JOURNAL/JPOLA