Journal of the American Chemical Society
Article
ORCID
Scheme 9. Proposed Catalytic Cycle for the Guerbet
Reaction of Ethanol
Author Contributions
‡S.F. and Z.S. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for the financial support of the National
Program for Thousand Young Talents of China and 111
project. We also thank Mr. Zi-Ang Nan (iChEM) and Dr. Xin
He (Tsinghua University) for their kind help with the single-
crystal X-ray diffraction analysis. Prof. Peng Kang and Miss
Fang-Wei Liu from TIPCCAS are also appreciated for their
assistance with the gas phase GC analysis.
REFERENCES
■
(1) (a) Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek,
G.; Cairney, J.; Eckert, C. A.; Frederick, W. J.; Hallett, J. P.; Leak, D. J.;
Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.; Tschaplinski, T.
Science 2006, 311, 484. (b) Sreekumar, S.; Balakrishnan, M.; Goulas,
K.; Gunbas, G.; Gokhale, A. A.; Louie, L.; Grippo, A.; Scown, C. D.;
Bell, A. T.; Toste, F. D. ChemSusChem 2015, 8, 2609. (c) Wu, L.;
Moteki, T.; Gokhale, A. A.; Flaherty, D. W.; Toste, F. D. Chem 2016,
1, 32.
(2) Biello, D. Can Ethanol from Corn Be Made Sustainable?. Scientific
(3) (a) Durre, P. Biotechnol. J. 2007, 2, 1525. (b) Harvey, B. G.;
̈
the catalytic reaction conditions. In addition, [Mn]-1d could
convert to another off-cycle species acetate complex [Mn]-1g
by reacting with NaOAc generated during the reaction process.
However, [Mn]-1g could only regenerate the catalytically active
species [Mn]-1c and [Mn]-1d with the assistance of strong
base (NaOH or NaOEt), which are both consumed during the
reaction process.21
Meylemans, H. A. J. Chem. Technol. Biotechnol. 2011, 86, 2.
(4) Anbarasan, P.; Baer, Z. C.; Sreekumar, S.; Gross, E.; Binder, J. B.;
Blanch, H. W.; Clark, D. S.; Toste, F. D. Nature 2012, 491, 235.
(5) Jin, C.; Yao, M.; Liu, H.; Lee, C.-f. F.; Ji, J. Renewable Sustainable
Energy Rev. 2011, 15, 4080.
(6) (a) Guerbet, M. C. R. Acad. Sci. Paris 1899, 128, 1002.
(b) Guerbet, M. C. R. Acad. Sci. Paris 1909, 149, 129. (c) Veibel, S.;
Nielsen, J. I. Tetrahedron 1967, 23, 1723. (d) O’Lenick, A. J., Jr. J.
Surfactants Deterg. 2001, 4, 311. (e) Goulas, K. A.; Sreekumar, S.;
Song, Y.; Kharidehal, P.; Gunbas, G.; Dietrich, P. J.; Johnson, G. R.;
Wang, Y. C.; Grippo, A. M.; Grabow, L. C.; Gokhale, A. A.; Toste, F.
D. J. Am. Chem. Soc. 2016, 138, 6805.
(7) (a) Obora, Y. ACS Catal. 2014, 4, 3972. (b) Yang, Q.; Wang, Q.;
Yu, Z. Chem. Soc. Rev. 2015, 44, 2305. (c) Freitag, F.; Irrgang, T.;
(8) (a) Tsuchida, T.; Kubo, J.; Yoshioka, T.; Sakuma, S.; Takeguchi,
T.; Ueda, W. J. Catal. 2008, 259, 183. (b) Riittonen, T.; Toukoniitty,
E.; Madnani, D. K.; Leino, A.-R.; Kordas, K.; Szabo, M.; Sapi, A.; Arve,
CONCLUSIONS
■
In conclusion, we developed a Mn-catalyzed process to upgrade
ethanol into 1-BuOH with high selectivity. It demonstrated an
active catalytic system for ethanol upgrading via the Guerbet
reaction, reaching the highest TON (114 120) and TOF (3078
h−1) achieved to date. Moreover, a mechanistic study was also
implemented to identify the essential role of the “N−H moiety”
on the manganese catalyst and several major reaction
intermediates related to the catalytic cycle. The observed
remarkable catalyst performance represents a considerable step
toward a sustainable and efficient synthesis of biofuels with high
energy density from bio-derived feedstocks.
K.; Warna, J.; Mikkola, J.-P. Catalysts 2012, 2, 68. (c) Ogo, S.; Onda,
̈
̊
A.; Iwasa, Y.; Hara, K.; Fukuoka, A.; Yanagisawa, K. J. Catal. 2012, 296,
24. (d) Xu, G.; Lammens, T.; Liu, Q.; Wang, X.; Dong, L.; Caiazzo, A.;
Ashraf, N.; Guan, J.; Mu, X. Green Chem. 2014, 16, 3971. (e) Galadima,
A.; Muraza, O. Ind. Eng. Chem. Res. 2015, 54, 7181. (f) Earley, J. H.;
Bourne, R. A.; Watson, M. J.; Poliakoff, M. Green Chem. 2015, 17,
3018. (g) Moteki, T.; Flaherty, D. W. ACS Catal. 2016, 6, 4170.
(h) Taborga Claure, M.; Lee, L.-C.; Goh, J. W.; Gelbaum, L. T.;
Agrawal, P. K.; Jones, C. W. J. Mol. Catal. A: Chem. 2016, 423, 224.
(9) (a) Dowson, G. R. M.; Haddow, M. F.; Lee, J.; Wingad, R. L.;
Wass, D. F. Angew. Chem., Int. Ed. 2013, 52, 9005. (b) Wingad, R. L.;
Gates, P. J.; Street, S. T. G.; Wass, D. F. ACS Catal. 2015, 5, 5822.
(c) Tseng, K.-N. T.; Lin, S.; Kampf, J. W.; Szymczak, N. K. Chem.
Commun. 2016, 52, 2901. (d) Xie, Y.; Ben-David, Y.; Shimon, L. J. W.;
Milstein, D. J. Am. Chem. Soc. 2016, 138, 9077.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Crystallographic data for [Mn]-1b, [Mn]-1c, [Mn]-1d,
[Mn]-1f, [Mn]-1g, 3, 4, 5, and 7 (ZIP)
Experimental details, characterization data, and spectra,
including Figures S1−S61, Schemes S1−S4, and Tables
(10) (a) Koda, K.; Matsu-ura, T.; Obora, Y.; Ishii, Y. Chem. Lett.
2009, 38, 838. (b) Chakraborty, S.; Piszel, P. E.; Hayes, C. E.; Baker,
R. T.; Jones, W. D. J. Am. Chem. Soc. 2015, 137, 14264.
(11) (a) Elangovan, S.; Topf, C.; Fischer, S.; Jiao, H.; Spannenberg,
A.; Baumann, W.; Ludwig, R.; Junge, K.; Beller, M. J. Am. Chem. Soc.
AUTHOR INFORMATION
Corresponding Author
■
G
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX