HETEROCYCLES, Vol. 80, No. 2, 2010
785
3. (a) G. W. Kabalka, Z. Wu, and Y. Ju, Org. Lett., 2002, 4, 1491; (b) G. W. Kabalka, M.-L. Yao, S.
Borella, Z.-Z. Wu, Y.-H. Ju, and T. Quick, J. Org. Chem., 2008, 73, 2668.
4. M. F. Lappert and B. Prokai, J. Organometal. Chem., 1964, 1, 384.
5. (a) G. W. Kabalka, Z. Wu, and Y. Ju, Org. Lett., 2004, 6, 3929; (b) G. W. Kabalka, M.-L. Yao, S.
Borella, and Z.-Z. Wu, Chem. Commun., 2005, 2492; (c) G. W. Kabalka, M.-L. Yao, S. Borella, and Z.-
Z. Wu, Org. Lett., 2005, 7, 2865; (d) G. W. Kabalka, M.-L. Yao, and S. Borella, Org. Lett., 2006, 8,
879; (e) G. W. Kabalka, M.-L. Yao, and S. Borella, J. Am. Chem. Soc., 2006, 128, 11320; (f) G. W.
Kabalka, M.-L. Yao, S. Borella, and L. K. Goins, Organometallics, 2007, 26, 4112; (g) M.-L. Yao, S.
Borella, T. Quick, and G. W. Kabalka, J. Chem. Soc. Dalton, 2008, 776; (h) M.-L. Yao, M. S. Reddy,
W.-B. Zeng, K. Hall, I. Walfish, and G. W. Kabalka, J. Org. Chem., 2009, 74, 1385; (i) M.-L. Yao, T.
Quick, Z.-Z. Wu, M. P. Quinn, and G. W. Kabalka, Org. Lett., 2009, 11, 2647.
6. (a) S. Hara, H. Dojo, S. Takinami, and A. Suzuki, Tetrahedron Lett., 1983, 24, 731; (b) S. K. Stewart
and A. Whiting, Tetrahedron Lett., 1995, 36, 3925; (c) A. P. Lightfoot, G. Maw, C. Thirsk, S. J. R.
Twiddle, and A. Whiting, Tetrahedron Lett., 2003, 44, 7645; (d) G. W. Kabalka and A. R. Mereddy,
Organometallics, 2004, 23, 4519; (e) A. S. Batsanov, J. P. Knowles, and A. Whiting, J. Org. Chem.,
2007, 72, 2525.
7. GC-MS studies were run on Hewlett packard: HP 6890 series GC System with 5973 Mass Selective
Detector; Column: Agilent 19091S-433E, 30.0mm x 0.25mm x 0.25m; Gas (He) flow rate: 0.8
mL/min; Initial temperature; 50 oC (hold 1 min); Ramp temperature rate: 7 oC/min to maximum 280 oC.
8. Phenylacetylene (204 mg, 2.0 mmol) and p-bromobenzaldehyde (185 mg, 1.0 mmol) and were placed
in a dry argon-flushed, 50 mL round-bottomed flask equipped with a stirring bar and dissolved in 15
mL dry CH2Cl2. The solution was cooled to desired temperature, and boron trichloride (1.1 mmol, 1.1
mL of a 1.0 M CH2Cl2 solution) was added via a syringe. The solution was allowed to stir for 1 h at that
temperature. The resulting mixture was hydrolyzed with water (20 mL) and extracted with hexanes (2 x
30 mL). The organic layer was separated and passed through a short silicon gel column to remove the
trace of water and acidic by-product.
9. Spectral data for (E,E)-1,5-dichloro-1,4-diene (3): 1H NMR (250 MHz, CDCl3): σ 7.47-7.01 (m, 14 H),
13
6.05 (d, 2 H, J = 10.7 Hz), 4.34 (t, 1 H, J = 10.7 Hz). C NMR: σ 140.60, 136.19, 132.89, 131.98,
128.84, 128.64, 128.22, 128.16, 121.01, 44.78.
10. Crystal structure analysis for (E,E)-diene 3: (C23H17BrCl2, Mr=444.18), monoclinic, space group
P2(1)/n, a=8.730(2) Å, b= 13.248(3) Å, c=16.912(4) Å, α=90.00, β=95.957(4), γ=90.00, V=1945.4(8)
Å3, Z=4, T=173(2), 17368 collected, 3899 crystallographic independent and 3442 reflexes mit I>2s(I),
MoKa radiation, λ=0.71073 Å, θmax=26.20, R[I>2s(I)]: R1=0.0375, wR2= 0.0963, wR2=0.1008 (all data).