C O M M U N I C A T I O N S
1324. (b) Schmidtchen, F. P; Berger, M. Chem. ReV. 1997, 97, 1609–1646.
(c) See ref 6j.
(8) For examples of ditopic receptors for the molecular recognition of ion pairs,
see: (a) Deetz, M. J.; Shang, M.; Smith, B. D. J. Am. Chem. Soc. 2000,
122, 6201–6207. (b) Mahoney, J. M.; Beatty, A. M.; Smith, B. D. J. Am.
Chem. Soc. 2001, 123, 5847–5848. (c) Nabeshima, T.; Saiki, T.; Iwabuchi,
J.; Akine, S. J. Am. Chem. Soc. 2005, 127, 5507–5511.
(9) (a) Dijkink, J.; Speckamp, N. Tetrahedron Lett. 1977, 18, 935–938. (b)
Dijkink, J.; Speckamp, N. Tetrahedron 1978, 34, 173–178. (c) Romero,
A. G.; Leiby, J. A.; Mizsak, S. A. J. Org. Chem. 1996, 61, 6974–6979.
(10) For the synthesis of enantioenriched 2-arylpyrrolidines, see: Campos, K. R.;
Klapars, A.; Waldman, J. H.; Dormer, P. G.; Chen, C. J. Am. Chem. Soc.
2006, 128, 3538–3539.
(11) The analogous urea catalysts are less reactive but induce only slightly lower
levels of enantioselectivity (85% ee for the urea analogue of catalyst 8 in
the cyclization of 1 to 2). The sulfur atom of the thiourea therefore does
not appear to play a direct role in the reaction mechanism.
(12) For seminal work on the relative stereochemical outcomes of polycyclization
reactions, see: (a) Stork, G.; Burgstahler, A. W. J. Am. Chem. Soc. 1955,
77, 5068–5077. (b) Eschenmoser, A.; Ruzicka, L.; Jeger, O.; Arigoni, D.
HelV. Chim. Acta 1955, 38, 1890–1904. (c) Johnson, W. S. Acc. Chem.
Res. 1968, 1, 1–8.
structure through noncovalent interactions is a viable means of
achieving high levels of enantioselectivity in counterion catalysis.
Acknowledgment. This work was supported by the NIGMS
(PO1 GM-69721 and RO1 GM-43214) and by a postdoctoral
fellowship to R.R.K. from the NIH. We thank Dr. Shao-Liang
Zheng for crystal structure determinations and Dr. Kristine Nolin
for the synthesis and use of catalysts.
Supporting Information Available: Full experimental procedures,
syntheses of substrates and catalysts, characterization data for all
new compounds, NMR spectra for bicyclization products, SFC traces
for scalemic bicyclization products, data sets for Eyring analysis
and correlations with arene properties, and crystallographic informa-
tion for compounds 2, 18, and 20. This material is available free of
(13) For an alternative asymmetric synthesis of related trans-perhydroisoqui-
nolone structures, see: Kamatani, A.; Overman, L. E. Org. Lett. 2001, 3,
1229–1232.
(14) In the absence of the thiourea catalyst, an HCl-catalyzed process forms a
monocyclized byproduct.
(15) Higher yields and faster reactions are observed using increasing amounts
of HCl, though with diminished enantioselectivities.
(16) In all cases, the only detectable byproduct is a monocyclized and eliminated
product formed with low enantioselectivity.
(17) Enantioselectivity is strongly correlated with the electronic properties of
the arene nucleophile, with electron-deficient arenes proving optimal.
Results for less enantioselective substrates are included in the Supporting
Information.
(18) (a) Williams, D. H.; Calderone, C. T. J. Am. Chem. Soc. 2001, 123, 6262–
6267. (b) Dunitz, J. D. Chem. Biol. 1995, 2, 709–712. (c) Westwell, M. S.;
Searle, M. S.; Klein, J.; Williams, D. H. J. Phys. Chem. 1996, 100, 16000–
16001.
(19) For discussion of cation-π binding with polycyclic aromatic hydrocarbons,
see: (a) Vijay, D.; Sastry, N. Phys. Chem. Chem. Phys. 2008, 10, 582–
590. (b) Ng, K. M.; Ma, N. L.; Tsang, C. W. Rapid Commun. Mass
Spectrom. 1998, 12, 1679–1684. (c) Gal, J.-F.; Maria, P.-C.; Decouzon,
M.; Mo, O.; Yanez, M.; Abboud, J. L. M. J. Am. Chem. Soc. 2003, 125,
10394–10401. (d) Amunugama, R.; Rodgers, M. T. Int. J. Mass Spectrom.
2003, 227, 1–20.
(20) Preliminary 2° KIE studies indicate that ionization of the chlorolactam is
rate-limiting in these reactions. As the enantioselectivity-determining
cyclization step occurs after the rate-determining step, the question of
whether enantioselectivity is achieved by stabilizing or destabilizing
interactions cannot be addressed by absolute rate comparisons of the
different catalysts.
(21) For a discussion of the importance of polarizability and dispersion forces
in catalysis involving extended arenes and in cation-π binding, see: (a)
McCurdy, A.; Jimenez, L.; Stauffer, D. A.; Dougherty, D. A. J. Am. Chem.
Soc. 1992, 114, 10314–10321. (b) Ngola, S. M.; Dougherty, D. A. J. Org.
Chem. 1996, 61, 4355–4360. (c) Kennan, A. J.; Whitlock, H. W. J. Am.
Chem. Soc. 1996, 118, 3027–3028. (d) Cubero, E.; Luque, F. J.; Orozco,
M. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 5976–5980.
(22) For a discussion of the electrostatic component of cation-π binding, see:
Mecozzi, S.; West, A. P.; Dougherty, D. A. J. Am. Chem. Soc. 1996, 118,
2307–2308.
(23) For calculated values of the quadrupole moments of extended arenes, see:
(a) Heard, G. L.; Boyd, R. J. J. Phys. Chem. A. 1997, 101, 5374–5377. (b)
See ref 19b.
(24) For the polarizabilities of extended arenes, see: (a) Waite, J. M.; Papa-
dopoulos, M. G.; Nicolaides, C. A. J. Chem. Phys. 1982, 77, 2536–2539.
(b) Alparone, A.; Librando, V.; Minniti, Z. Chem. Phys. Lett. 2008, 460,
151–154.
References
(1) For the first suggestion of this interaction in cyclases, see: (a) Shi, Z.; Buntel,
C. J.; Griffin, J. H. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 7370–7374. (b)
Poralla, K.; Hewelt, A.; Prestwich, G. D.; Abe, I.; Reipen, I.; Sprenger, G.
Trends. Biochem. Sci. 1994, 19, 157–158. (c) Dougherty, D. A. Science
1996, 271, 163–168.
(2) For recent reviews on synthetic and enzymatic polycyclizations that discuss
the role of cation-π interactions, see: (a) Wendt, K. U.; Schulz, G. E.;
Corey, E. J.; Liu, D. R. Angew. Chem., Int. Ed. 2000, 39, 2812–2833. (b)
Yoder, R. A.; Johnston, J. N. Chem. ReV. 2005, 105, 4730–4756. (c)
Christianson, D. W. Chem. ReV. 2006, 106, 3412–3442. (d) Hoshino, T.;
Sato, T. Chem. Commun. 2002, 291–301.
(3) (a) Wendt, K. U.; Poralla, K.; Schulz, G. E. Science 1997, 277, 1811–
1815. (b) Wendt, K. U.; Lenhart, A.; Schulz, G. E. J. Mol. Biol. 1999,
286, 175–187. (c) Thoma, R.; Schulz-Gasch, T.; D’Arcy, B.; Benz, J.; Aebi,
J.; Dehmlow, H.; Hennig, M.; Stihle, M.; Ruf, A. Nature 2004, 432, 118–
122. (d) Hoshino, T.; Sato, T. Chem. Commun. 1999, 2005–2006. (e)
Merkofer, T.; Pale-Grosdemange, C.; Wendt, K. U.; Rohmer, M.; Poralla,
K. Tetrahedron Lett. 1999, 40, 2121–2124. (f) Hoshino, T.; Kouda, M.;
Abe, T.; Sato, T. Chem. Commun. 2000, 1485–1486. (g) Morikubo, N.;
Fukuda, Y.; Ohtake, K.; Shinya, N.; Kiga, D.; Sakamoto, K.; Asanuma,
M.; Hirota, H.; Yokoyama, S.; Hoshino, T. J. Am. Chem. Soc. 2006, 128,
13184–13194.
(4) For an antibody-catalyzed polycyclization where cation-π interactions play
a key role, see: Paschall, C. M.; Hasserodt, J.; Jones, T.; Lerner, R. A.;
Janda, K. D.; Christianson, D. W. Angew. Chem., Int. Ed. 1999, 38, 1743–
1747.
(5) For seminal work in the development of enantioselective polyene cycliza-
tions, see: (a) Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem.
Soc. 1999, 121, 4906–4907. (b) Ishihara, K.; Ishibashi, H.; Yamamoto, H.
J. Am. Chem. Soc. 2001, 123, 1505–1506. (c) Ishibashi, H.; Ishihara, K.;
Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 11122–11123. (d) Sakakura,
A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900–903. (e) Mullen, C. A.;
Campbell, M. A.; Gagne´, M. R. Angew. Chem., Int. Ed. 2008, 147, 6011–
6014.
(6) (a) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558–
10559. (b) Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 2005, 44, 6700–6704. (c) Raheem, I. T.; Thiara, P. S.; Peterson,
E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404–13405. (d)
Raheem, I. T.; Thiara, P. S.; Jacobsen, E. N. Org. Lett. 2008, 10, 1577–
1580. (e) Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc.
2008, 130, 7198–7199. (f) Klausen, R. S.; Jacobsen, E. N. Org. Lett. 2009,
11, 887–890. (g) Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc. 2009,
131, 15358–15374. (h) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobsen,
E. N. Science 2010, 327, 986–990. (i) De, C. K.; Klauber, E. G.; Seidel,
D. J. Am. Chem. Soc. 2009, 131, 17060–17061. For a recent review, see:
(j) Zhang, Z.; Schreiner, P. R. Chem. Soc. ReV. 2009, 38, 1187–1198.
(7) For reviews discussing general aspects of cation-π and anion binding
respectively, see: (a) Ma, J.; Dougherty, D. A. Chem. ReV. 1997, 97, 1303–
JA101256V
9
5032 J. AM. CHEM. SOC. VOL. 132, NO. 14, 2010