13C NMR (100 MHz, C6D6) d 14.56, 27.1 60.8, 80.2, 110.9,
124.0, 142.9, 165.7.
9 (a) J. Villieras and M. Rambaud, Synthesis, 1982, 924; (b) J. Villieras
and M. Rambaud, Synthesis, 1983, 300; (c) J. Villieras and
M. Rambaud, Synthesis, 1984, 406; (d) M. Rambaud, A. del
Vechhhio and J. Villieras, Synth. Commun., 1984, 14, 833;
(e) J. Villieras, M. Rambaud and M. Graff, Synth. Commun.,
1985, 15, 569; (f) J. Villieras, M. Rambaud and M. Graff,
Tetrahedron Lett., 1985, 26, 53.
10 (a) C. Piechucki, Synthesis, 1976, 187; (b) E. D’Incan and
J. Seyden-Penne, Synthesis, 1975, 516; (c) M. Mikolajczyk,
S. Grzejszczak, W. Midura and A. Zatorski, Synthesis, 1975, 278.
11 E. Winterfeldt, Synthesis, 1975, 617.
3-[(4R,5R)-5-(3-Hydroxy-1-(E)-propen-1-yl)-2,2-dimethyl-
[1,3]dioxolan-4-yl]-prop-2-(E)-en-1-ol (c6)43.
1H NMR
(400 MHz, C6D6) d 1.47 (s, 6H), 2.83 (br s, OH, 2H), 3.94,
(d, J = 4.8 Hz, 4H), 4.16–4.21 (m, 2H), 5.73 (ddd, J = 15.5,
4.8, 1.8 Hz, 2H), 5.897 (dt, J = 15.5, 4.8 Hz, 2H); 13C NMR
(100 MHz, C6D6) d 27.3, 62.4, 82.0, 109.1, 126.8, 134.4.
12 M. R. Johnson and B. Rickborn, J. Org. Chem., 1970, 35, 1041.
13 L. Giraud, V. Huber and T. Jenny, Tetrahedron, 1998, 54, 11899.
14 E. Finholt, A. C. Bond Jr. and H. I. Schlesinger, J. Am. Chem.
Soc., 1947, 69, 1199.
15 U. E. Diner, H. A. Davies and R. K. Brown, Can. J. Chem., 1967,
45, 207.
16 (a) H. C. Brown and N. M. Yoon, J. Am. Chem. Soc., 1966, 88,
1464; (b) N. M. Yoon and H. C. Brown, J. Am. Chem. Soc., 1968,
90, 2927.
17 S. Griffin, L. Heath and P. Wyatt, Tetrahedron Lett., 1998, 39,
4405.
18 (a) E. M. Marlett and W. S. Park, J. Org. Chem., 1990, 55, 2968;
(b) T. D. Hubert, D. P. Eyman and D. F. Wiemer, J. Org. Chem.,
1984, 49, 2279; (c) J. S. Cha and H. C. Brown, J. Org. Chem., 1993,
58, 3974.
19 The reaction RX + LAH - RH + AlH3 + LiX was reported by
S. Krishnamurthy and H. C. Brown, J. Org. Chem., 1982, 47, 276.
20 E. C. Ashby, T. N. Pham and A. Amrollah-Madjdabdi, J. Org.
Chem., 1991, 56, 1596.
4-(20-Deoxy-30,40,60-tri-O-benzyl-a-D-galactopyranosyl)-2(E)-
butenoate (b9). 1H NMR (400 MHz, CDCl3)
d 1.25
(t, J = 7.1 Hz, 3H), 1.47–1.55 (m, 1H), 1.98–2.06 (m, 1H),
2.25–2.33 (m, 1H), 2.41–2.50 (m, 1H), 3.68–3.73 (m, 1H),
3.73–3.76 (m, 1H), 3.78–3.83 (m, 1H), 3.90–3.98 (m, 1H),
4.00–4.11 (m, 2H), 4.16 (q, J = 7.1 Hz, 2H), 4.50–4.72
(m, 6H), 5.86 (d, J = 15.7 Hz, 1H), 6.91 (dt, J = 15.7, 7.2
Hz, 1H), 7.24–7.37 (m, 15H); 13C NMR (100 MHz, CDCl3) d
14.2, 32.6, 36.3, 60.1, 66.6, 67.3, 71.4, 72.2, 73.11, 73.14, 73.6,
74.9, 123.4, 127.2, 127.41, 127.43, 127.5, 127.6, 127.7, 128.22,
128.26, 138.28, 138.36, 138.46, 144.7, 166.2. HRMS (ESI)
+
(MNH4 ) C33H42NO6 calcd for m/z 548.3007, found
548.3002.
4-(20-Deoxy-30,40,60-tri-O-benzyl-a-D-galactopyranosyl)-2(E)-
buten-1-ol (c9). 1H NMR (400 MHz, CDCl3) d 1.47–1.56
(m, 1H), 1.99–2.08 (m, 1H), 2.10–2.19 (m, 1H), 2.28–2.38
(m, 1H), 3.63–3.69 (m, 2H), 3.72–3.76 (m, 1H),
3.78–3.83 (m, 1H), 3.88–3.95 (m, 1H), 3.96–4.00 (m, 1H),
4.01–4.07 (m, 2H), 4.47–4.74 (m, 6H), 5.61–5.67 (m, 2H),
7.20–7.40 (m, 15H); 13C NMR (100 MHz, CDCl3) d 32.0,
36.1, 63.4, 67.9, 71.2, 72.4, 73.1, 73.2, 73.5, 74.9, 127.3, 127.4,
127.5, 127.8, 128.24, 128.29, 128.34, 128.6, 138.3, 138.4, 138.6.
HRMS (ESI) (MNH4+) C31H40NO5 calcd for m/z 506.2901,
found 506.2899.
21 H.-S. Byun, K. C. Reddy and R. Bittman, Tetrahedron Lett., 1994,
35, 1371.
22 During the preparation of this manuscript a report of the prepara-
tion of AlH3 from BnCl and LAH was published: X. Wang, X. Li,
J. Xue, Y. Zhao and Y. Zhang, Tetrahedron Lett., 2009, 50, 413.
We note that n-BuBr is a much safer reagent than BnCl, and is
especially suitable for producing AlH3 for large-scale synthesis.
23 A. Madin, C. J. O’Donnell, T. Oh, D. W. Old, L. E. Overman and
M. J. Sharp, J. Am. Chem. Soc., 2005, 127, 18054.
24 L. He, H.-S. Byun and R. Bittman, J. Org. Chem., 2000, 65, 7627.
25 A. Krief, W. Dumont and P. Pasau, Tetrahedron Lett., 1988, 29,
1079.
26 T. Onoda, R. Shirai, N. Kawai and S. Iwasaki, Tetrahedron, 1996,
52, 13327.
27 L. He, H.-S. Byun, J. Smit, J. Wilschut and R. Bittman, J. Am.
Chem. Soc., 1999, 121, 3897.
Acknowledgements
28 (a) A. Massi, A. Nuzzi and A. Dondoni, J. Org. Chem., 2007, 72,
10279; (b) Z. Wang, H. Shao, E. Lacroix, S.-H. Wu, H. J. Jennings
and W. Zou, J. Org. Chem., 2003, 68, 8097; (c) H. Shao, Z. Wang,
E. Lacroix, S.-H. Wu, H. J. Jennings and W. Zou, J. Am. Chem.
Soc., 2002, 124, 2130.
29 (a) P. Kumar and M. S. Bodas, J. Org. Chem., 2005, 70, 360;
(b) P. Kumar, S. V. Naidu and P. Gupta, J. Org. Chem., 2005, 70,
2843.
30 J. Einhorn, C. Einhorn, F. Ratajczak and J.-L. Pierre, J. Org.
Chem., 1996, 61, 7452.
31 Theoretically, reduction of RCO2Et requires 2/3 equiv. of LAH:
2AlH3 + 3RCO2Et - (EtO)Al(OCH2R)2 + (EtO)2Al(OCH2R).
In order to speed up the reaction, a slight excess (1.3 equiv.) of
LAH was used.
This work was supported in part by National Institutes of
Health Grant No. HL083187. We thank Dr William E.
Berkowitz for helpful comments in the preparation of the
manuscript.
Notes and references
1 T. Katsuki and V. S. Martin, Org. React., 1996, 48, 1.
2 T. Katsuki, in Comprehensive Asymmetric Catalysis, ed.
E. N. Jacobsen, A. Pfaultz and H. Yamamoto, Springer-Verlag,
Berlin and Heidelberg, 1999, vol. II, pp. 649–678.
3 For reviews of the HWE reaction, see: (a) J. Boutagy and
R. Thomas, Chem. Rev., 1974, 74, 87; (b) W. S. Wadsworth Jr.,
Org. React., 1977, 25, 73; (c) B. E. Maryanoff and A. B. Reitz,
Chem. Rev., 1989, 89, 863.
32 For a theoretical analysis of the reaction of AlH3 with H2CO
to form AlH2(OMe), see: J. M. Coxon and R. T. Luibrand,
Tetrahedron Lett., 1993, 34, 7093.
33 AlH2(OMe), which was prepared from AlH3 + MeOH, is less
reactive than AlH3, and was used for the hydrogenolysis of acetals
and ketals: W. W. Zajac Jr. and K. J. Byrne, J. Org. Chem., 1973,
38, 384.
34 X. Lu, L. Song, L. S. Metelitsa and R. Bittman, ChemBioChem,
2006, 7, 1750.
4 V. J. Patil and U. Mavers, Tetrahedron Lett., 1996, 37, 1287.
¨
5 (a) S. K. Thompson and C. H. Heathcock, J. Org. Chem., 1990, 55,
3386; (b) M. W. Rathke and M. Nowak, J. Org. Chem., 1985, 50,
2624; (c) M. A. Balanchette, W. Choy, J. T. Davis, A. P. Essenfield,
S. Masamune, W. R. Roush and T. Sakai, Tetrahedron Lett., 1984,
25, 2183.
6 Generally, use of a large phosphonoester reagent in the HWE
reaction gives a higher E/Z ratio: H. Nagaoka and Y. Kishi,
Tetrahedron, 1981, 37, 3873.
7 C.-J. Li, Chem. Rev., 2005, 105, 3095.
8 A. El-Batta, C. Jiang, W. Bao, R. Annes, A. L. Cooksy and
M. Bergdahl, J. Org. Chem., 2007, 72, 5244.
35 After the reduction was completed, it was difficult to stir the
reaction mixture because of the insolubility of the formed Al(OR)3
in toluene. This problem was overcome by the addition of dry THF
when the reaction approached completion.
36 R. A. Fernandes and P. Kumar, Tetrahedron: Asymmetry, 1999,
10, 4797.
ꢁc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2010
474 | New J. Chem., 2010, 34, 470–475