Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 9 3829
Table 7. X-ray Crystallography Data Collection and Refinement
Statistics
of psoriasis: a focus on Efalizumab. Expert Opin. Biol. Ther. 2003, 3,
361–370. (d) Dedrick, R. L.; Walicke, P.; Garovoy, M. Anti-adhesion
antibodies Efalizumab, a humanized anti-CD11a monoclonal antibody.
Transplant Immunol. 2002, 9, 181–186.
space group
˚
P212121
40.6
a, A
(5) Liu, G. Inhibitors of LFA-1/ICAM-1 interaction: From mono-
clonal antibodies to small molecules. Drugs Future 2001, 26,
767-778 and references cited therein.
˚
b, A
˚
c, A
63.6
63.1
(6) Dodd, D. S.; Sheriff, S.; Chang, C.-Y. J.; Stetsko, D. K.; Phillips,
L. M.; Zhang, Y.; Launay, M.; Potin, D.; Varcarro, W.; Poss,
M. A.; McKinnon, M.; Barrish, J. C.; Suchard, S. J.; Dhar, T. G. M.
Design of LFA-1 agonists based on a 2,3-dihydro-1H-pyrrolizin-
5(7aH)-one scaffold. Bioorg. Med. Chem. Lett. 2007, 17, 1908–1911.
(b) Potin, D.; Launay, M.; Monatlik, F.; Malabre, P.; Fabreguette, M;
Fouquet, A.; Maillet, M.; Nicolai, E.; Dorgeret, L.; Chevallier, F.; Besse,
D.; Dufort, M.; Caussade, F.; Ahmad, S. Z.; Stetsko, D. K.; Skala, S.;
Davis, P. M.; Balimane, P.;Patel, K.; Yang, Z.; Marathe, P.;Postelneck, J.;
Townsend, R. M.; Goldfarb, V.; Sherriff, S.; Einspahr, H.; Kish, K.;
Malley, M. F.; DiMarco, J. D.; Gougoutas, J. Z.; Kadiyala, P.; Cheney,
D. L.; Tejwani, R. W.; Murphy, D. K.; McIntyre, K. W.; Yang, X.; Chao,
S.; Leith, L.; Xiao, Z.; Mathur, A.;Chen, B.-C.; Wu, D.-R.; Traeger, S. C.;
McKinnon, M.; Barrish, J. C.; Robl, J. A.; Iwanowicz, E. J.; Suchard,
S. J.; Dhar, T. G. M. Discovery and Development of 5-[(5S,9R)-9-(4-
Cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-tria-
zaspiro [4.4]non-7-yl]methyl]-3-thiophenecarboxylic acid (BMS-
587101);A small molecule antagonist of leukocyte function
associated antigen-1. J. Med. Chem. 2006, 49, 6946–6949. (c) Potin,
D.; Launay, M.; Nicolai, E.; Fabreguette, M.; Malabre, P.; Caussade,
F.; Besse, D.; Skala, S.; Stetsko, D. K.; Todderud, G.; Beno, B. R.;
Cheney, D. L.; Chang, C. J.; Sheriff, S.; Hollenbaugh, D. L.; Barrish,
J. C.; Iwanowicz, E. J.; Suchard, S. J.; Dhar, T. G. M. De novo design,
synthesis and in vitro activity of LFA-1 antagonists based on a
bicyclic[5.5]hydantoin scaffold. Biorg. Med. Chem. Lett. 2005, 15,
1161–1164.
(7) (a) Wattanasin, S.; Kallen, J.; Myers, S.; Guo, Q.; Sabio, M.;
Ehrhardt,C.;Albert,R.;Hommel, U.;Weckbecker, G.;Welzenbach,
K.; Weitz-Schmidt, G. 1,4-Diazepane-2,5-diones as novel inhibitors
of LFA-1. Bioorg. Med. Chem. Lett. 2005, 15, 1217–1220. (b) Wu,
J.-P.; Emeigh, J.; Gao, A. A.; Goldberg, D. R.; Kuzmich, D.; Miao, C.;
Potocki, I.; Qian, K. C.; Sorcek, R. J.; Jeanfavre, D. D.; Kishimoto, K.;
Mainolfi, E. A.; Nabozny, G.; Peng, C.; Reilly, P.; Rothlein, R.; Sellati,
R. H.; Woska, J. R.; Chen, S.; Gunn, J. A.; O'Brien, D.; Norris, S. H.;
Kelly, T. A. Second-generation lymphocyte function-associated antigen-1
inhibitors: 1H-Imidazo[1,2-a]imidazol-2-one derivatives. J. Med. Chem.
2004, 47, 5356–5366. (c) Gadek, T. R.; Burdick, D. J.; McDowell, R. S.;
Stanley, M. S.; Marsters, J. C., Jr.; Paris, K. J.; Oare, D. A.; Reynolds,
M. E.; Ladner, C.; Zioncheck, K. A.; Lee, W. P.; Gribling, P.; Dennis,
M. S.; Skelton, N. J.; Tumas, D. B.; Claark, K. R.; Keating, S. M.;
Beresini, M. H.; Tilley, J. W.; Presta, L. G.; Bodary, S. C. Generation of an
LFA-1 antagonist by the transfer of ICAM-1 immunoregulatory epitope to
a small molecule. Science 2002, 295, 1086–1089. (d) Sircar I.; Furth, P.;
Teegarden, B. R.; Morningstar, M.; Smith, N.; Griffith, R. Patent WO
0130781 (Tanabe Seiyaku) 2001. (e) Weitz-Schmidt, G.; Welzenbach, K.;
Brinkmann, V.; Kamata, T.; Kallen, J.; Bruns, C.; Cottens, S.; Takada, Y.;
Hommel, U. Statins selectively inhibit leukocyte function antigen-1 by
binding to a novel regulatory integrin site. Nat. Med. 2001, 7, 687–692.
(f) Kelly, T. A.; Jeanfavre, D. D.; McNeil, D. W.; Woska, R. J.; Reilly, L. P.;
Mainolfi, E. A.; Kishimoto, K. M.; Nabozny, G. H.; Zinter, R.; Bormann,
B.; Rothlein, R. Cutting edge: A small molecule antagonist of LFA-1
mediated cell adhesion. J. Immunol. 1999, 163, 5173–5177.
overall
last
˚
resolution, A
50-1.85
91910
13552
6.8
1.92-1.85
g6398
1089
measured
unique
redundancy
% complete
R value
6.6
76.8
93.3
0.86
0.310
5.8
I/σI
23.0
Rwork
Rfree
0.192
0.227
0.006
1.1
˚
rmsd bond distances, A
rmsd bond angles, deg
equipped with MicroMax optics and a Rigaku Saturn92 detector.
The data was processed with HKL200019 and had symmetry
consistent with space group P212121 and unit cell parameters of
˚
˚
˚
a = 40.6 A, b = 63.6 A, and c = 63.1 A (the inverted distance
order of the b and c axes kept the same indexing as a canonical
data set where the c axis was longer than the b axis). A cycle of
rigid body fitting was carried out with the CCP4 version of
AMoRe.20 Refinement was performed with CNX21 starting with
a cycle of rigid body refinement and followed by an annealing
protocol and individual B-factor refinement. QUANTA22 was
used for examining the model and the electron density maps. The
ligand was placed by the X-ligand module of QUANTA,22 and
water molecules were placed by examination. Electron density
map fitting was alternated with refinement of the model with
CNX using only minimization and individual B factor refinement
until no significant electron density was uninterpreted. The final
R
work was 0.219 and Rfree was 0.255. The rmsd for bond distances
˚
was 0.007 A and the rmsd for bond angles was 1.4° (Table 7).
References
(1) (a) Hogg, N.; Henderson, R.; Leitinger, B.; McDowall, A.; Porter,
J.; Stanley, P. Mechanisms contributing to the activity of integrins
on leukocytes. Immunol. Rev. 2002, 186, 164–171. (b) Smith, A.;
Stanley, P.; Jones, K.; Svensson, L.; McDowall, A.; Hogg, N. The role
of the integrin LFA-1 in T-lymphocyte migration. Immunol. Rev. 2007,
218, 135–146. (c) Welzenbach, K.; Hommel, U.; Weitz-Schmidt, G.
Small molecule inhibitors induce conformational changes in the
I Domain and the I-like domain of lymphocyte function-associated
antigen-1. J. Biol. Chem. 2002, 277, 10590–10598.
(2) (a) Shimaoka, M.; Springer, T. A. Therapeutic antagonists and the
conformational regulation of the β2 intergrins. Curr. Top. Med.
Chem. 2004, 4, 1485–1495. (b) Shimaoka, M.; Xiao, T.; Liu, J.-H.;
Yang, Y.; Dong, Y.; Jun, C.-D.; McCormiack, A.; Zhang, R.; Joachimak,
A.; Takagi, J.; Wang, J.-H.; Springer, T. A. Structures of the aL I Domain
and its complex with ICAM-1 reveal a shape-shifting pathway for
integrin regulation. Cell 2003, 112, 99–111. (c) Ma, Q.; Shimaoka, M.;
Lu, C.; Jing, H; Carman, C. V.; Springer, T. A. Activation-induced
conformational changes in the I Domain region of lymphocyte function-
associated antigen-1. J. Biol. Chem. 2002, 277, 10638–10641. (d) Salas,
A.; Shimaoka, M.; Chen, S.; Carman, C. V.; Springer, T. Transition from
rolling to firm adhesion is regulated by the conformation of the I Domain
of the integrin lymphocyte function-associated antigen-1. J. Biol. Chem.
2002, 277, 50255–50262. (e) Takagi, J.; Springer, T. A. Integrin activa-
tion and structural rearrangement. Immunol. Rev. 2002, 186, 141–163.
(3) Berlin-Rufenach, C.; Otto, F.; Mathies, M.; Westermann, J.;
Owen, M. J.; Hamann, A.; Hogg, N. Lymphocyte Migration in
Lymphocyte Function-Associated Antigen (LFA)-1-deficient
Mice. J. Exp. Med. 1999, 189, 1467–1478.
(8) Last-Barney, K.; Davidson, W.; Cardozo, M.; Frye, L. L.; Grygon,
C. A.; Hopkins, J. L.; Jeanfavre, D. D.; Pav, S.; Qian, C.; Stevenson,
J. M.; Tong, L.; Zindell, R.; Kelly, T. A. Binding site elucidation of
hydantoin-based antagonists of LFA-1 using multidisciplinary tech-
niques: Evidence for the allosteric inhibition of a protein-protein
interaction. J. Am. Chem. Soc. 2001, 125, 5643–5650.
(9) Similar results were seen with a Boehringer-Igelheim series of LFA-
1 antagonists. (a)Winquist, R. J.; Desai, S.; Fogal, S.; Haynes, N. A.;
Nabozny, G. H.; Reilly, P. L.; Souza, D.; Panzenbeck, M. The role
of leukocyte function-associated antigen-1 in animal models of
inflammation. Eur. J. Pharmacol. 2001, 429, 297–302. (b) Panzenbeck,
M. J.; Jeanfavre, D. D.; Kelly, T. A.; Lemieux, R.; Nabozny, G.; Reilly,
P. L.; Desai, S. An orally active, primate selective antagonist of LFA-1
inhibits delayed-type hypersensitivity in a humanized-mouse model. Eur.
J. Pharmacol. 2006, 534, 233–240.
(10) Sushard, S. J.; Stetsko, D. K.; Davis, P. M.; Skala, S.; Potin, D.;
Launay, M.; Dhar, T. G. M.; Barrish, J. C.; Susulic, V.; Shuster,
D. J.; McIntyre, K. W.; McKinnon, M.; Salter-Cid, L. An LFA-1
(aL,b2) small-modecule antagonist reduces inflammation and joint
destruction in murine models of arthritis. J. Immunol. 2010, 184,
3917–3926.
(4) (a) Selenko-Gebauer, N.; Karlhofer, F.; Stingl, G. Efalizumab in
routine use: a clinical experience. Br. J. Dermatol. 2007, 156, 1–6.
(b) Lebwohl, M.; Tyring, S. K.; Hamilton, T. K.; Toth, D.; Glazer, S.;
Tawfik, N. H.; Walicke, P.; Dummer, W.; Wang, X.; Garovoy, M. R.;
Pariser, D. A novel targeted T-cell modulator, Efalizumab, for plaque
psoriasis. N. Engl. J. Med. 2003, 349, 2004–2013. (c) Cather, J. C.;
Cather, J. C.; Menter, A. Modulating T cell responses for the treatment
(11) Dhar, T. G. M.; Launay, M.; Potin, D; Watterson, S. H., Xiao, Z.
Pyridyl-substituted spiro-hydantoin compounds and their preparation,