1886
Z. Jiang, Y. Lu / Tetrahedron Letters 51 (2010) 1884–1886
Supplementary data
O
O
OH
O
O
OH
a) NaBH(OAc)3, AcOH, THF
b) 1N HCl
R
Supplementary data associated with this article can be found, in
O
H
R
CH3
8a
: R = H
9a: R = H, dr 10:1 (96%)
References and notes
8d
: R = NO2
9b: R = NO2, dr 92:8 (95%)
1. Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim, 2004; Vols.
1–2.
Scheme 1. Preparation of chiral lactones.
2. For selected reviews on asymmetric organocatalysis, see: (a) Dalko, P. I.;
Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138; (b) Berkessel, A.; Groger, H.
Asymmetric Organocatalysis; Wiley-VCH: Weinheim, 2005; (c) Dalko, P. I..
Enantioselective Organocatalysis: Reactions and Experimental Procedures; Wiley-
VCH: Weinheim, 2007; (d) Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008,
47, 4638; (e) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem.,
Int. Ed. 2008, 47, 6138.
3. List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395.
4. For a recent review, see: Guillena, G.; Najera, C.; Ramon, D. J. Tetrahedron:
Asymmetry 2007, 18, 2249.
5. For recent reviews on primary amine catalysis, see: (a) Xu, L.-W.; Luo, J.; Lu, Y.
Chem. Commun. 2009, 1807; (b) Xu, L.-W.; Lu, Y. Org. Biomol. Chem. 2008, 6,
2047.
6. (a) Jiang, Z.; Liang, Z.; Wu, X.; Lu, Y. Chem. Commun. 2006, 2801; (b) Jiang, Z.;
Yang, H.; Han, X.; Luo, J.; Wong, M. W.; Lu, Y. Org. Biomol. Chem. 2010.
7. (a) Cheng, L.; Wu, X.; Lu, Y. Org. Biomol. Chem. 2007, 5, 1018; (b) Wu, X.; Jiang,
Z.; Shen, H. M.; Lu, Y. Adv. Synth. Catal. 2007, 349, 812; (c) Cheng, L.; Han, X.;
Huang, H.; Wong, M. W.; Lu, Y. Chem. Commun. 2007, 4143; (d) Zhu, Q.; Lu, Y.
8. Zhu, Q.; Lu, Y. Chem. Commun. 2008, 6315.
9. Han, X.; Kwiatkowski, J.; Xue, F.; Huang, K.-W.; Lu, Y. Angew. Chem., Int. Ed.
2009, 48, 7604.
10. (a) Senanayake, C. H.; Fang, K.; Grover, P.; Bakale, R. P.; Vandenbossche, C. P.;
Wald, S. A. Tetrahedron Lett. 1999, 40, 819; (b) Grover, P. T.; Bhongle, N. N.;
Wald, S. A.; Senanayake, C. H. J. Org. Chem. 2000, 65, 6283; (c) Masumoto, S.;
Suzuki, M.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2002, 43, 8647; (d) Gupta,
P.; Fernandes, R. A.; Kumar, P. Tetrahedron Lett. 2003, 44, 4231; (e) Masumoto,
S.; Suzuki, M.; Kanai, M.; Shibasaki, M. Tetrahedron 2004, 60, 10497.
11. (a) Wang, F.; Xiong, Y.; Liu, X.; Feng, X. Adv. Synth. Catal. 2007, 349, 2665; (b)
Tang, Z.; Cun, L.-F.; Cui, X.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Org. Lett. 2006, 8,
1263; (c) Xu, X.-Y.; Tang, Z.; Wang, Y.-Z.; Luo, S.-W.; Cun, L.-F.; Gong, L.-Z. J.
Org. Chem. 2007, 72, 9905; (d) Tokuda, O.; Kano, T.; Gao, W.-G.; Ikemoto, T.;
Maruoka, K. Org. Lett. 2005, 7, 5103; (e) Liu, J.; Yang, Z.; Wang, Z.; Wang, F.;
Chen, X.; Liu, X.; Feng, X.; Su, Z.; Hu, C. J. Am. Chem. Soc. 2008, 130, 5654; (f)
Wang, Y.; Shen, Z.; Li, B.; Zhang, Y.; Zhang, Y. Chem. Commun. 2007, 1284.
12. (a) Saito, S.; Yamamoto, H. Acc. Chem. Res. 2004, 37, 570; (b) Mase, N.; Tanaka,
F., ; Barbas, C. F., III Angew. Chem., Int. Ed. 2004, 43, 2420; (c) Sakthivel, K.; Notz,
W.; Bui, T.; Barbas, C. F., III J. Am. Chem. Soc. 2001, 123, 5260; (d) Saito, S.;
Nakadai, M.; Yamamoto, H. Synlett 2001, 1245; (e) Nakadai, M.; Saito, S.;
Yamamoto, H. Tetrahedron 2002, 58, 8167; (f) Luo, S.; Xu, H.; Li, J.; Zhang, L.;
Cheng, J.-P. J. Am. Chem. Soc. 2007, 129, 3074.
Since the acidic additive was important for the reactions, we
subsequently examined the effects of various acidic additives on
the reaction. As shown in Table 2, formic acid was the best additive
among a number of acids examined.
Having established the optimized conditions, the reaction scope
was next examined (Table 3). Various a-ketoesters were employed
and in general, the aldol products were obtained in moderate to
excellent yields and with good enantioselectivities. In addition to
aryl ketoesters, alkyl ketoesters were also employed (entries 8
and 9). Unfortunately, we could not extend the reaction to include
acyclic ketones other than acetone.
The aldol product is rich in functionality, which allows for simple
synthetic manipulations. Thus, aldol product 8a was converted into
lactone 9a in 96% yield and a 10:1 diastereomeric ratio, following a
literature procedure.11c Similarly, lactone 9b was prepared from
8d in 95% yield and with excellent diastereoselectivity (Scheme 1).
In conclusion, we have prepared a number of novel diamine
organocatalysts and investigated their effects on the asymmetric
direct aldol reaction of acetone with a-ketoesters. Tertiary-primary
diamine catalysts derived from serine, in combination with formic
acid, proved to be the most effective, affording the desired aldol
products with up to 95% ee. Investigations on the extension of
the catalysts described herein to other asymmetric carbon–carbon
bond-forming reactions are in progress in our laboratory and will
be reported in due course.
Acknowledgements
The authors thank the National University of Singapore and
Ministry of Education (MOE) of Singapore (R-143-000-362-112)
for generous financial support.