C O M M U N I C A T I O N S
Table 2. N-Arylation of Various Nitrogen Heterocycles
in normal conditions and Cu(I) in nitrogen atmosphere (see SI).
The FTIR spectrum of the used catalyst 1 obtained in normal
conditions (see SI) shows the disappearance of the P-OH bond,
indicating the regeneration of 1 to initiate another cycle. Although
we are unable to isolate any intermediate complex, the identification
of Cu(I) complex in nitrogen atmosphere presumes copper-assisted
nucleophilic displacement of X- of the arene by N--Het, providing
coupling product via transient 4. In normal conditions, the formed
Cu(I) may be reoxidized to 1. Similarly, in a reaction with the
chloroarene, the deep blue complex 3 obtained from 2 also provides
coupling product. The deep blue complex formed on the treatment
of a simple copper hydroxyapatite with imidazole is inert in the
coupling reaction with the chlorobenzaldehyde. The above results
and the identification of intermediates provide better comprehension
on the mechanism and the necessity of strong basic sites in the
apatite for the transformation of 3 to give the coupling product.
In conclusion, newly designed and developed copper basic
apatites are found to be potential candidates for N-arylation of
heterocycles of both chloroarenes (EW and ED) and fluoroarenes
(EW).
X
)
Cl
X
)
F
entry
Het-NH
time (h)
yield (%)a
time (h)
yield (%)a
1
2
3
4
pyrrole
pyrazole
benzimidazole
piperidine
4
3
12
5
90 (80) 0b
95 (85)
85 (72)
90 (80)
2
1
9
1
95 (85) 0b
90 (80)
85 (75)
95 (85)
a Yields refer to GC yields, and yields in parentheses refer to isolated
yields. b Without Cu, reaction with ArX and ArX(ED).
Scheme 2. Possible Mechanism for the N-Arylation of
Heterocycles
Acknowledgment. Ch.S. and G.T.V. thank the CSIR, India,
for SRF and JRF, respectively.
Supporting Information Available: Full characterization of all
catalysts with detailed experimental procedures. This material is
References
(1) Cozzi, P.; Carganico, G.; Fusar, D.; Grossoni, M.; Menichincheri, M.;
Pinciroli, V.; Tonani, R.; Vaghi, F.; Salvati, P. J. Med. Chem. 1993, 36,
2964.
(2) See the important references: (a) Antilla, J. C.; Baskin, J. M.; Barder, T.
E.; Buchwald, S. L. J. Org. Chem. 2004, 69, 5578. (b) Antilla, J. C.;
Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684. (c)
Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem.
Soc. 2001, 123, 7727. (d) Kiyomori, A.; Marcoux, J. F.; Buchwald, S. L.
Tetrahedron Lett. 1999, 40, 2657.
(3) See the important references: (a) Cristau, H. J.; Cellier, P. P.; Spindler, J.
F.; Taillefer, M. Eur. J. Org. Chem. 2004, 695. (b) Cristau, H. J.; Cellier,
P. P.; Spindler, J. F.; Taillefer, M. Chem.-Eur. J. 2004, 10, 5607.
(4) (a) Son, S. U.; Park, I. K.; Park, J.; Hyeon, T. Chem. Commun. 2004,
778. (b) Amrani, R. O.; Schneider, R.; Fort, Y. Synthesis 2004, 15, 2527.
(5) See the Pd(0)-catalyzed C-N and C-C bond formation with electron-
withdrawing fluoroarenes: (a) Kim, Y. M.; Yu, S. J. Am. Chem. Soc.
2003, 125, 1696. (b) Widdowson, D. A.; Wilhelm, R. Chem. Commun.
2003, 578. (c) Widdowson, D. A.; Wilhelm, R. Chem. Commun. 1999,
2211. (d) Wilhelm, R.; Widdowson, D. A. J. Chem. Soc., Perkin Trans.
1 2000, 22, 3808.
(6) See the hydrotalicite-supported Pd for the C-Cl activation in C-C bond
formation reactions: (a) Choudary, B. M.; Madhi, S.; Chowdari, N. S.;
Kantam, M. L.; Sreedhar, B. J. Am. Chem. Soc. 2002, 124, 14127. (b)
Choudary, B. M.; Madhi, S.; Kantam, M. L.; Sreedhar, B.; Iwasawa, Y.
J. Am. Chem. Soc. 2004, 126, 2292.
(7) (a) Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J.
Am. Chem. Soc. 2000, 122, 7144. (b) Mori, K.; Yamaguchi, K.; Hara, T.;
Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2002, 124, 11572.
(c) Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem.
Soc. 2003, 125, 11460. (d) Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.;
Kaneda, K. J. Am. Chem. Soc. 2004, 126, 10657.
other attributes of this innovative coupling. Such precedence of
higher reactivity of C-F over C-Cl for fluoroarenes (EW) in
Suzuki reaction is recorded.5b In N-arylation of heterocycles with
fluoroarenes (EW), even CuHAP showed good performance (entry
14). On detailed examination, the in situ formed catalyst 1 as
indicated by XPS and FTIR (see SI) is indeed found to be the real
catalyst. However, there was no N-arylation reaction with fluo-
robenzene by catalyst 1. As shown in Table 2, benzimidazole,
pyrrole, pyrazole, and piperidine are also coupled with 1-chloro-
4-nitrobenzene and 1-fluoro-4-nitrobenzene to give the correspond-
ing N-arylated products in very excellent yields.
To understand the mechanism of the N-arylation of imidazole,
a series of experiments were conducted. The reaction of catalyst 1
with imidazole gives a deep blue Cu-imidazole complex (3), which
is considered to be the first step of the catalytic cycle as described
in Scheme 2, since there was no reaction between catalyst 1 and
chloro- or fluorobenzaldehyde. The XPS of N 1s (3) lines appears
at 401.8 and 399.6 eV (see SI), which are assigned to Cu-N and
CdN bonds, respectively.9 The FTIR of 3 indicates P-OH (see
SI), which is in consonance to the identical hydride(enolato)-
ruthenium(II)apatite complex reported earlier.7c Subsequent reaction
of complex 3 with chloro- or fluorobenzaldehyde affords the final
product N-arylimidazole instantly and leaves the 1 [Cu(II)] catalyst
(8) van Berkel, S. S.; van den Hoogenband, A.; Terpstra, J. W.; Tromp, M.;
van Leeuwen, P. W. N. M.; van Strijdonck, G. P. F. Tetrahedron Lett.
2004, 45, 7659.
(9) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomden, K. D. Handbook of
X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp.: Eden Prairie, MN,
1992.
JA0436594
9
J. AM. CHEM. SOC. VOL. 127, NO. 28, 2005 9949